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Abstract—Mixnets are widely believed to hide communication
metadata of individuals. We show that there are various pitfalls
when designing mixnet topologies and routing strategies, in
particular when choosing mixnets with low delays. We intro-
duce a tool that empirically evaluates such a leakage in mixnets
and show that this tool precisely estimates this leakage for
recipient anonymity, up to an error introduced by sampling.
First, we introduce a novel generic attack strategy that we
even prove to be optimal for breaking recipient anonymity. In
contrast to prior work, our attack strategy incorporates the
severity of each observation’s leakage, via its so-called privacy
loss. Second, our tool provides a lower bound on an attacker’s
advantage against recipient anonymity by sampling a large
set of observations; if a significant number of observations
with high privacy loss is observed, the tool outputs a lower
bound on the leakage by providing a lower bound on the
mass of the tail of the distribution of privacy losses. From the
literature, we study the topology and routing strategies of the
Karaoke and Atom protocols, provide bounds on their leakage
and recommend design choices based on the analysis.

1. Introduction

Mixing networks (or mixnets) [8] aim to hide the com-
munication metadata of its users by letting all messages fol-
low a cascade of mixing nodes (or mixnodes), each of which
shuffles those messages. In practice, as the number of mes-
sages grows, relying on the cascade approach does not scale
in terms of (cryptographic) computation and communication
costs; thus, most mixnet designs distribute the traffic load
horizontally over several nodes to scale for a large number
of messages. Particularly, mixnets follow different routing
strategies such as square-lattice shuffling [20], butterfly net-
work [1], or stratified network [21], [22], [27]. While such
a communication strategy seems to hide communication
metadata, it is not clear which network topologies and
routing strategies are necessary to achieve strong anonymity
properties. In particular, prior analyses of mixnets were
highly untight and sometimes even wrong [13].

Prior analyses of mixnets did not consider that the
probability for a given adversarial metadata observation to
occur is higher for some user actions (say, “Alice talks
to Bob”) than for other user actions (say, “Alice talks to
Charlie”). Consider recipient anonymity: the attacker spies
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Figure 1: Example observation annotated with the probabili-
ties as propagated by the adversary. There are more random-
ness tapes that lead to this observation if u0 sends a message
to R0 than if u0 sends a message to R1. For simplicity
of understanding, none of the nodes are compromised. For
this simplified example, there are exactly 8 ways to get this
observation; 5 if u0 sends the message to R0 and 3 if u0

sends the message to R1. We list those in Appendix 2.

on communication metadata and wants to find out whether
Alice sent a message to Bob or Charlie. For a given metadata
observation, the probability might be non-zero that Alice
sent a message to Bob and non-zero that Alice sent a
message to Charlie; yet, the probabilities of these two events
might be vastly different (see Figure 1). We call the ratio
of these probabilities for a given observation the a posterori
biases (or its logarithm the privacy loss). This raises the
question: “Can such a posteriori biases be successfully uti-
lized by attackers against anonymity properties of mixnets?”

Prior work takes initial steps for empirically estimating
leakage via a posteriori biases [2], [6], [7]. Yet, this prior
work solely quantified a lower bound on the a posteriori
bias. This prior work has not estimated a lower bound on
the adversarial advantage, which is typically estimated in
anonymity analyses.

Our contribution. We positively answer this question for
recipient anonymity and show that mixnets with low latency
have significant leakage. Our contribution is threefold.

1) We introduce an optimal attacker against recipient
anonymity that precisely computes the probability that, for
a given observation, Alice sent a message to Bob and
the probability that Alice sent a message to Charlie. In
particular, the optimal attack is able to take a posteriori



biases into account by computing the so-called privacy loss,
i.e., the logarithm of the ratio of probabilities.

2) We utilize this optimal attacker to construct a tool
to analyze these a posteriori biases. Our results show that
taking these a posteriori biases can lead to an order of
magnitude increased adversarial advantage compared to re-
stricting the analysis to observations where the probability of
sending a message to Bob or Charlie is 0. This tool samples
mixnet meta-data observations and uses them to estimate an
upper bound and lower bound on the attacker’s advantage δ,
with high confidence. In contrast to entropy-based empirical
evaluation [14], our tool provides provable and quantifiable
confidence intervals on δ. We detail their limitations and
compare them with us in Section 2.3.

It might be of independent interest that we derive a
novel and robust empirical measure of leakage that is tighter
than prior empirical estimates and not only applicable to
the analysis of anonymity properties but also to security
properties and differential privacy.

3) We study two major protocols, Karaoke [22] and
Atom [20]. Prior proofs attempt to identify sufficient con-
ditions, which we call ‘gadgets’, that have turned out to
be insufficient. We introduce a GadgetTester that samples
observations and reports the maximally observed a posteriori
bias that satisfies the gadget. The GadgetTester can thus
quickly generate good counter-examples against a gadget-
based proof. Furthermore, we report insights towards im-
proving their privacy and scalability and generalize them
for Karaoke’s successors Yodel [23], and Groove [5].

Key insights. Our tool uses our optimal attack strategy (Sec-
tion 3.2) and evaluates the anonymity guarantees of several
existing mixnets, as well as providing general insights.
We quantitatively confirm some insights provided by the
existing anonymity trilemma results [10], [12]. Additionally,
taking a posteriori biases into account leads to far tighter
lower bounds (often by about one order of magnitude) than
just quantifying the probability of a total breakdown of
anonymity. In particular, a stratified mixnet with three hops
has significant leakage, and the a posteriori bias is so high
that it does not even provide meaningful deniability in the
sense of differential privacy.

We show that the proof technique used by Karaoke [22]
is inaccurate; and therefore, the anonymity guarantees of
Karaoke and related designs [5], [23], [29] might be flawed.
More specifically, their proof technique attempts to identify
a sufficient conditions for mixing (cf. Section 2.1). Yet, their
proof does not take a posteriori biases into account and
leaks information to the adversary based on the number
of messages transmitted through the network links. Our
evaluation of their end-to-end protocol provides evidence for
differential privacy-like guarantees. Additionally, we show
directions towards making Atom-like designs more practical
by relaxing its communication model and network topology.
We provide detailed insights about them in Section 7.

Symbol Description

N number of users
R number of rounds
k width of the network
y privacy loss
∇ instance of randomness tapes
N set of nodes (per layer)
C set of compromised nodes (per layer)
ti,k encrypted packet on the k-th hop

from sender ui

ti,k.prev, ti,k.next two nodes of the k-th hop of ti,k
u0 sender Alice

R0, R1 the two potential recipients
scenario A the case where R0 receives the message
scenario B the case where R1 receives the message

TABLE 1: Notation Table

2. Background and related work

2.1. Relevant mixnet designs and motivation

Several approaches exist in the literature to make
mixnets scalable based on different network topologies
and different routing strategies. The protocols that attempt
to achieve provable guarantees under indistinguishability-
based notions (how easily the adversary can distinguish who
among Alice and Bob could have sent a certain message)
typically follow a proof strategy similar to the following:
(i) identify a set of conditions or ‘gadget’ that are suffi-
cient to ensure the shuffle of the two concerned messages
(e.g., the messages from Alice and Bob), (ii) compute the
probability of that gadget appearing on the paths of the
messages. Depending on the routing strategy, topology, etc.,
it is not always straightforward to construct such gadgets,
and many times badly constructed gadgets could lead to
incorrect security proofs. We summarize below some of the
relevant protocols, highlighting the gadgets used in their
proof technique and why those gadgets are incomplete.

2.1.1. Karaoke and Stadium. Karaoke [22] and Sta-
dium [29] (and their successors Yodel [23] and Groove [5])
can scale to millions of users by utilizing multiple paths
in a layered topology (c.f. Fig. 2: for each hop/layer of
a message, the sender chooses a mixnode from the set
of all mixnodes in the system. To achieve link saturation,
they leverage numerous noise messages in Θ(|servers|2),
which yields a property similar to relationship anonymity.
Additionally, they require the clients to send messages in
batches; each client sends exactly one message in each
batch, and whenever they don’t have a real message to send,
they send a dummy message to complete a batch.

For the security argument, Karaoke uses the following
gadget: let a and b are two honest messages, and n0 and n1

are two noise messages generated by honest parties (users or
servers). The messages a and n0 both go through the same
honest server/mixnode si0a at layer i0, and the messages b
and n1 meets at an honest mixnode si1b at layer i1. Then,
b meets n0 at layer j1 at an honest mixnode sj1b , and a
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(a) The network topology of Karaoke.

(b) The gadget used in their anonymity proof.

Figure 2: The routing strategy and gadget of Karaoke.

meets n1 at layer j0 at an honest mixnode sj0a , such that
max{i0, i1} < min{j0, j1}. They claim that the above event
is indistinguishable from the event where a gets swapped
with n0 at layer i0 and b gets swapped with n1 at layer ii,
then a and b meet n1 and n0 at layers j1 and j0, respectively.

However, this proof does not consider that different links
can have a different number of messages, and that could
make some observations more likely compared to others.
Das et al. [13, Appendix A.1] have shown the existence of
a counter-example where the above gadget is satisfied even
though the protocol has significant leakage in those con-
figurations. That demonstrates the necessity of a thorough
verification of the anonymity guarantees (or the gadgets
which the proof is relying on) for a concerned protocol.
We have presented a similar case in Figure 1, where a bias
exists that can be exploited. To analyze such gadgets and
find counter-examples we have implemented a simple gadget
tester (c.f. Section 6.2) for the gadget shown in Figure 2b.

The main difference between Stadium [29] and Karaoke
is in how they defend against active attacks: Stadium uses
verifiable shuffle to detect and defend against packet drops
by the mixnodes; on the other hand, Karaoke uses Bloom
filters to detect such packet drops.

The protocols Yodel [23] and Groove [5] follow a similar
mixing strategy, except that they maintain persistent con-
nections or circuits. Users maintain their circuits for the
same amount of time (similar to epochs), using them for
applications like voice calls. A global adversary can anyway
link together all the packets related to the same circuit (since
they are part of the same voice call session). However, their
goal is to obfuscate the two ends of a specific circuit.
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Figure 3: The square network topology of Atom deployed
with N = 3 servers and N = 9 messages in a batch.

2.1.2. Atom. Atom [20] can provide strong anonymity guar-
antees by deploying a square network topology (as shown
in Fig. 3: for a batch of N messages, the system requires
are N =

√
N servers. In a given round, each server receives

a subset of exactly
√
N messages, shuffles that subset,

and equally distributes the messages among all the servers
for the next round. If all the servers are honest, based on
Hastad’s square shuffle analysis [19], after T > 10 rounds of
such iterations the output would be indistinguishable from
a uniform permutation.

However, not all servers could be honest in practice:
they suggest using a cluster of 32 servers that collectively
shuffle a subset for a given iteration: as long as any one
of those 32 servers is honest, the cluster would emulate an
honest mixer with all but a negligible probability. This puts a
significant deployment overhead for such designs to be used
effectively. It is natural to ask: what would the anonymity
guarantee when the clusters are significantly smaller in size
so that there is a small but non-negligible probability that
a cluster could be completely compromised? The existing
analysis (in [19]) is not applicable anymore.

In practice, enforcing the exact same number of mes-
sages received by each mixing cluster is not easy. Especially
if the design lets users choose the path of their messages,
such assumptions will not hold anymore. It is not yet
known how to prove the anonymity guarantees formally for
Atom-like designs with such a communication model. Our
tool allows a thorough analysis of the guarantees of such
systems, with a tolerable error margin.

2.2. Analysis tools for a posteriori biases

The literature contains some results for empirically es-
timating a lower bound on leakage that takes a posteriori
biases into account [2], [6], [7]. This work concentrated
on differentially private mechanisms and solely quantified
a lower bound on the a posteriori bias as a multiplicative
error of the attacker, called a bound on the so-called privacy
loss or ε. In contrast to our work, this prior work does not
take into account how often and which kind of bias occurs
and has thus not estimated a lower bound on the adversarial
advantage, which is typically estimated in anonymity anal-
yses.

3



2.3. Experimental evaluation based on entropy

Evaluation of anonymity based on entropy [14] also
requires estimating the probabilities correlating the input
and output messages of the mixnet, for a chosen instance of
that mixnet. That is similar to executing our adversary for
a single observation of the mixnet protocol. Even our ad-
versary (defined in Section 3.1) has strong similarities with
the adversary considered in [14] (and its implementation
Mixim [18]).1 However, there are some subtle differences.
Our tool/adversary first samples an observation, and then
computes the chance(s) that the observation is produced by
either the message being linked to Alice or to Bob, based
on all possible random choices in the protocol (choice of
the users, mixnodes, etc). On the contrary, for experimental
evaluation of entropy [18], the random choices (of the users
and other parties in the protocol) are controlled in the
experiment, and then the observation is generated and the
probability that the adversary can track a specific target
message is computed.

Our tool can accurately verify when a gadget is badly
designed (cf. Section 6.2). Evaluating such gadgets is not
possible with Mixim. In the absence of such a gadget, when
we need to evaluate the end-to-end protocol, both methods
produce some sampling error. However, because of our
formal approach to defining the adversary, we can quantify
and bound the sampling error. It is not straightforward to
quantify the overall error for entropy-based evaluations.

Our proof of optimality for the adversary provides
strong evidence for the soundness of the adversary used
by entropy-based techniques. However, our proof shows
the optimality only for recipient anonymity, which is an
indistinguishability-based notion.

3. Definitions: Anonymity, Adversary

3.1. Game definition

In this paper, we leverage the AnoA framework for
anonymity [3]. Here, anonymity is defined in terms of an
indistinguishability game between a challenger that runs the
protocol and an adversary that chooses the user behavior.
The adversary eventually sends a challenge message that has
a user send a message to one of two potential recipients. The
Challenger (cf. Figure 4) selects one of those based on its
secret challenge bit and continues to run the protocol. The
goal of the adversary is to guess the secret challenge bit.

In this work we focus on recipient anonymity as repre-
sented in AnoA and formally define an adversary class, to
ensure that the adversary fits to our scenario.

Our protocol’s wrapper and adversary class. Our com-
bination of protocol wrapper adversary class ensures that
every sender sends a message and every recipient receives
a message. All those messages from senders are sent to an

1. They do not have an explicit definition of an adversary; however, it
is implicit in their model.

Adaptive AnoA Challenger CH(Π, α, γ, b)

Initialize the Game
Set SESSIONS := ∅,States := [FRESH, FRESH, . . . ,
FRESH] (γ entries, one per challenge).

Upon message Input = (S,R,m, z)

SIMULATEPROTOCOL(Π,S,R,m, (A, z))

Upon message Challenge = (S0, S1,R0,R1,m,Ψ)

if Ψ /∈ {1, . . . , γ} ∨ States[Ψ] = OVER then
Output ⊥.

else
(state′,S∗,R∗)← α(States[Ψ],S0, S1,R0,R1, b)
Set States[Ψ] := state′.
SIMULATEPROTOCOL(Π, S∗,R∗,m, (CH,Ψ))

end if

Upon message (m, SID) from Π

if (ID, SID) ∈ SESSIONS for some value ID then
Send Observations = (m, ID) to A.

end if

Subroutine SimulateProtocol(Π, S,R,m, ID), where
ID = (CH,Ψ) or ID = (A, z)

if (ID, SID) ∈ SESSIONS for some value SID then
Retrieve this SID

else
Set SID ← N
Store (ID, SID) in SESSIONS

end if
Run Π on (S,R,m, SID).

Figure 4: The full AnoA challenger from Backes et al. [3],
included for completeness.

unimportant recipient RNoise where they can be discarded
and the messages for our two recipients of interest orig-
inate in unimportant senders. Formally, we require that
RNoise receives a message from every sender. The actual
challenge message then replaces one of those messages:
Alice’s message is sent to either Charlie or Dave, whereas
a random other sender is selected to send a message to the
one Alice doesn’t send a message to. This is to ensure that
the adversary cannot from the mere fact that Dave receives
a message infer that he was the challenge recipient.

In terms of AnoA’s sessions, we treat every session as an
individual run of the protocol. Our results thus compose se-
quentially as by AnoA’s single-challenge-reducibility. How-
ever, they do not compose in parallel: when two challenge
messages might interfere, our adversary is not necessarily
optimal anymore. We refer to Section 7.4 for a discussion.

3.2. Definition of the adversary

Below we present an efficient way to compute and
capture the observations that a global passive adversary
can make when looking at interactions within a stratified
mix network — we call this adversary heuristic adversary.

4



These observations include packets from users to nodes as
well as packets between nodes. They do not include any
cryptographic aspects of the protocols in question. We first
present a formal definition of an optimal adversary that takes
into account all possible cases that could lead to a certain
observation. We then show that our heuristic adversary is
equally strong.

Network topology. For simplicity of explanation, we con-
sider a stratified network topology where mixnodes are
arranged in ℓ ordered layers. The layers are interconnected
such that each mixnode in layer i receives messages from
mixnodes in layer i − 1 and sends messages to mixnodes
in layer i+ 1; while the first layer receives messages from
senders and the last layer forwards messages to their final
recipients. The path length of message routes is determined
by the number of layers ℓ. To select a message route,
each user chooses the nodes for each message uniformly at
random from each layer. Although we consider a stratified
topology our analysis is also valid for a free routing topology
where the users can choose each hop of the path from all
available mixnodes in the whole mixnet.

Client/Game Setting. We aim to analyze the ‘mixing’
quality of a mixnet against our heuristic adversary. We don’t
want to measure or model scenarios where the adversary
could win even if the mixnet was a trusted third party (e.g.,
if only one of the recipients ever received a message). To
that end all of our N senders send exactly one message each
and both of our recipients receive one message each.

3.3. Privacy loss

A notion closely related to our analysis is the so-called
privacy loss used in the field of privacy-preserving mecha-
nisms and personal data protection. Closely related to differ-
ential privacy, the privacy loss of an event is the (logarithm
of the) ratio between probabilities to observe the event in
one case, divided by the probability to observe the same
event in the other case. Applied to our notion of recipient
anonymity, the privacy loss is the logarithm between the
probability of observing if the target recipient is R0 divided
by the probability of making the same observation if the
target recipient is R1 (in differential privacy called x0, x1).
In cases where the numerator is zero, the privacy loss is zero
(and the logarithm −∞); in cases where the denominator is
zero, the privacy loss (and its logarithm) is ∞.

Definition 1 (Privacy loss). Let M : X 7→ U denote
a probabilistic measure, x0, x1 ∈ X some inputs, some
a, b ∈ {0, 1}, and o ∈ U an observation from universe U .

Then Lxa:b
: U 7→ Y denotes the privacy loss with sup-

port Y =
⋃

o∈U {Lxa:b
(o)} ⊂ R∪{−∞,∞} s.t. Lxa:b

(o) =
ln Pr[M(xa)=o]

Pr[M(xb)=o] if ∀η∈{0,1} : Pr[M(xη) = o] ̸= 0

∞ else if Pr[M(xb) = o] = 0

−∞ else.

The PDF of the privacy loss distribution (PLD) for each
atomic event y ∈ Y is given by

ωM,xa:b
(y) =

∑
{o|Lxa:b

(o)=y,o∈U}
Pr[M(xa) = o].

For completeness and to discuss the meaning of the re-
spective terms, we introduce the definition of (approximate)
differential privacy and discuss it

Definition 2 (Differential Privacy). Let M : X 7→ U denote
a probabilistic measure. M is (ε, δ)-differentially private if
for all neighboring inputs x0, x1 ∈ X and for all sets S ⊆ U
ob observations from universe U we have:

Pr[M(x0) ∈ S] ≤ eε Pr[M(x1) ∈ S] + δ

For an ε ≥ 0, we write δ(ε) to denote the smallest value
for δ such that M is (ε, δ(ε))-differentially private.2

If M is (ε, 0)-differentially private, we call it ε-
differentially private. In this case, the above definition of
approximate differential privacy reduces to what is some-
times called pure differential privacy.

In either case, ε measures the degree of bias that we
allow in observations, with a higher value of ε corresponding
to a higher allowed bias. For our purpose, we cannot use
pure differential privacy, as for any mix network with a
width ≤ 2 there will always be an observation where the
challenge message never mixes with any other message.
This probability tends to be exceedingly unlikely, but this
unlikelihood needs to be captured within δ.

Generally, δ captures two things: The probability of
distinguishing events in which an attacker can trivially win
the game, and a probability mass that exceeds the bias
described by ε. If we allow for a bias of eε and an unlikely
event occurs in M(x0) with a probability of p0 and a bias
of ey with y > ε, then a fraction of the probability, namely
(1−eε−y)·p0 contributes to δ. This is exactly the probability
mass that is outside of the bound set by ε.

Formally, we define the ε-attack advantage δ(ε) based on
the privacy loss (cf. Definition 1) as follows where for ε = 0
we obtain the unbiased attack advantage. Following [24], the
tightest δ for a given ε can be computed as follows.

Definition 3 (ε-Attack Advantage, cf. [28], Definition 6).
Let ωM,xa:b

denote a PLD as in Definition 1 with support
Y = (yi)

m
i=1 s.t. yi ≤ yi+1 (ascending-sorted). For ε ≥ 0,

we define the ε-attack advantage δ:

δ(ε, ωM,xa:b
) =

∑
yi∈Y\{∞}

max(0, (1− eε−yi)ωM,xa:b
(yi))

+ ωM,xa:b
(∞)

δ′(ε, ωM,x0:1
, ωM,x1:0

) = max
(a,b)∈{(0,1);(1,0)}

δ(ε, ωM,xa:b
)

2. Note that for any M and for any ε ≥ 0 we can always find a value for
δ such that M is (ε, δ)-differentially private. Even for completely broken
M we can fulfill the inequality with δ = 1; for reasonable M we will
have δ ≪ 1.
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4. Optimality of the heuristic adversary

When computing what occurs in the network, we can
fully capture every aspect of metadata available to the
adversary by considering the random path choices of the
parties involved. We can model those by considering each
sender to have an independent randomness tape (unavailable
to the adversary) that dictates all these choices. All instances
of those tapes are equally likely and the sum total of them
covers everything that could possibly happen in our protocol
run (since we exclude network issues or computer failures).

The game looks as follows: given an observation, we
want to find out what the probability is that the message of
Alice ended up in a specific node. A successful adversary
tries to trace Alice’s message optimally to compute for each
node the precise probability that Alice’s message ended up
in that node. For recipient anonymity, the adversary can then
directly guess which recipient received her message.

The optimal adversary acts as follows: given an obser-
vation, the adversary iterates over all randomness tapes. For
each instance of randomness tapes, the adversary runs the
idealized version of the protocol Prot ideal on those random
coins to compute an observation and a state of the messages
after the protocol run. It then checks whether the observation
fits the target observation and whether Alice’s message ends
up in the chosen node. If so, the adversary increases the
counter for that node by one (all counters initialized at zero).

At the end of this, the adversary has a counter cn for
every node n and then outputs a list of probabilities as
[ cn∑

j∈N cj
for n ∈ N ]. Note that given a scenario (who sends

messages to whom) and a network architecture,
∑

j∈N cj
specifies the number of instances that lead to the given
observation. With

∑
j∈N cj

#allobservations we have the probability
to yield this specific observation.

Definition 4 (Optimal recipient anonymity). We call an
adversary A optimal for the recipient anonymity game if
its outputs match the optimal adversary.

4.1. (Partial) Instances

A key insight is that we can relate (partial information
about) the randomness tapes directly to relevant aspects of
the observation.

Definition 5 (partial instance). A partial instance is a set
of instances with common elements and parts where they
differ, denoted by ∗. For example, a partial instance ∇ =
[∗, 1, ∗, ∗, . . . , ∗] contains all instances that have a ”1” at
their second position.

Given partial information about one or more nodes, i.e,
which messages are in the nodes and what the edge weights
are from those nodes, we say that ∇ is a partial instance
consistent with the partial information, if all instances I in
∇ are consistent with the partial information and if there
are no instances I /∈ ∇ that are also consistent with the
partial information. We call ∇ a partial instance about a
node i in round r if it contains values different from ∗ for

rounds r and r+1 of messages that in round r are in node
i, and contains ∗ everywhere else.

By their nature, partial instances group together all in-
stances consistent with them.

We characterize the information known to the adversary
from observing the network as an observation. For now we
define observations solely by their meta-data from observing
connections between network participants.

Definition 6 (Observation). An observation contains for
every round r the number of messages sent by each sender or
node to each other node or recipient. Formally, we consider
an observation as a graph, where each graph node is a
network node in a given round and each edge denotes
messages being sent from this node to other nodes. If the
network topology is not a cascade, then we use several
graph nodes (one for each round) to depict the same network
node. As each graph node depicts a network node in a
specific round, we denote it with the number of messages
inside that node in the given round. Each edge has a weight
equal to the number of messages being sent. The sum of
edge weights leaving each node naturally corresponds to
the number of messages in a node in a given round. If a
network node holds on to k messages from round r to round
r + 1, then the corresponding graph node for round r has
an edge with weight k to the graph node corresponding to
the same network node, but for round r + 1.

Lemma 1 (number of partial instances in relation to edge
weights). For any node i that in a round r has n messages
inside it, with outgoing edges with weights w1, . . . , wk, the
number of partial instances of node i in round r consistent
with those n messages in the node and those edges is given
by n!∏

j wj !
.

We refer to Appendix 1.1 for the proof. Lemma 1 boils
down to saying: There are n!∏

j wj !
ways to distribute the

n messages in a node i over the k edges with weights
w1, . . . , wk and this directly corresponds to partial instances
for node i in that round.

Very important to the overall proof approach is that the
probabilities derived from partial information on disjoint
nodes are independent and the numbers of partial instances
consistent with them can be multiplied with each other:
Given two pieces of partial information, say, information
about the edge weights for two different nodes i and j in
the same round. If there are pi partial instances consistent
with the information about i and pj many partial instances
consistent with the information about j, then there will be
pi · pj many partial instances consistent with the combined
information about i and j. In other words, information about
the flow of messages from node i is not dependent on the
flow of messages from node j. This property and its inherent
link to our adversary’s performance is why we focus on
single-message anonymity notions.

Lemma 2 (Node edge weights indicate probability factors).
We assume that the choice of each node in each round is
performed via uniformly distributed choice over all possi-
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ble nodes for that round and is independent of any prior
choices for the same path and of any choices made for
other messages. For any node i with n messages inside,
if there is an edge with weight wx to node x then out of
all partial instances consistent with the edge weights from
node i that have the message m in node i, a fraction wx

n
will subsequently have m in node x.

We refer to Appendix 1.2 for the proof.

4.2. The heuristic adversary

The heuristic adversary AHeu tracks probabilities for
messages in nodes and via edges between them. We define
the heuristic adversary as follows.

Definition 7 (Heuristic adversary). Given an observation as
in Definition 6, the one-message heuristic forward adversary
without output Aforward keeps a table of probabilities pri per
round r and per node i.

Initialization: If the challenge sender u0 sends their
challenge message to node i in round r = 0, then Aforward
assigns the probability p0i = 1.0 and assigns for all nodes
j ̸= i the probability p0j = 0.0.

Subsequent rounds: In every subsequent round r, the
adversary initializes prj with 0.0 for all nodes j and then
examines all nodes with messages.

If node i is tagged with probability pr−1
i for the previous

round and sends k messages in total in the current round,
then for every node j to which i sends a number of messages
kj , the adversary adds kj ·pr−1

i

k to prj .
Normalization: At the end of the final round rfin the

adversary repeats the same computation as above for the
two challenge recipients R0 and R1 and then normalizes
the probabilities by dividing by each by the sum of the two
probabilities.

Guessing: The adversary then guesses that the challenge
recipient is the one whose preceding node has the highest
probability. If the probabilities are equal or if there is only
one node left, then the adversary flips a coin to select a
recipient.

Lemma 3 (Perfect forward adversary). After Normalization,
the one-message heuristic forward adversary without output
messages, as defined in Definition 7, precisely computed the
fraction of instances that have the message end up in each
of the final nodes. In particular, the ratio of these fractions
corresponds to the privacy loss (cf. Definition 1) for this
observation.

We refer to Appendix 1.3 for the proof.

Theorem 1. The heuristic adversary as defined in Defini-
tion 7 is optimal for recipient anonymity as in Definition 4,
i.e., for every adversary A we have

Pr[b← ⟨A|CH(Π, αSA, 1, b)⟩ | b← {0, 1}]
≤ Pr[b← ⟨AHeu|CH(Π, αSA, 1, b)⟩ | b← {0, 1}]

Proof. The proof of this theorem follows from what we
discussed in this and the previous subsection. We know

from Lemma 3 that the heuristic adversary computes the
probability that the challenge message ends up with either
recipient. The heuristic adversary then guesses the recipient
with the highest probability. As any deviation from this
guess can only lower the chance of succeeding, the theorem
follows.

5. ε-attack advantage: lower & upper bound

We derive lower and upper bound for the ε-attack
advantage δ(ε) for any mechanism M by obtaining δ(ε)
from the privacy loss (cf. Section 3.3). In our work, we
first bound an empirical privacy loss distribution (ePLD)
ω̃ (cf. Definition 8) obtained by the attacker from a set
of observations On with a pointwise confidence band (cf.
Definition 9 and Lemma 4) and second use these bounds on
the ePLD to derive upper and lower bounds on the ε-attack
advantage (cf. Theorem 2). For the second part, we prove
that if one PLD is below the other, then so is the respective
ε-attack advantage. In Corollary 1, we show that our derived
bounds apply to a mixnet using the privacy loss obtained by
our optimal attacker (cf. Lemma 3).

5.1. Bounds on the ePLD

0 2 4 6

privacy loss y
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10−2

100
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emprical PLD ω̃

upper PLD ω

Figure 5: Exemplary cumulative PLDs for N = 1M,R =
5, k = 1000, |C| = 50. Leakage continues until y =∞.

We define four privacy loss distributions (PLD) and their
respective ε-attack advantages: the actual PLD ω with the
ε-attack advantage δ and three reciprocal cumulative PLDs

ω, ω̃, ωwith their respective ε-attack advantages δ, δ̃, δ.
Here, ωis the lower bound PLD with the lower bound ε-
attack advantage δ, δ̃ the empirical PLD with the empirical
ε-attack advantage δ̃, and ωthe upper bound LD with
the lower and upper bound ε-attack advantage δ. With ω

we notate a reciprocal cumulative PLD to differentiate it
from the non-cumulative PLD definition ω. In Figure 5 we
visualize the three PLDs ω, ˜ω, ωfor an exemplary mixnet
architecture. The exact PLD ω is unknown due to a limited
sampling size, but is in Theorem 2 proven to be in between

ωand ω. The empirical PLD ˜ωdescribes the most likely
exact PLD ω.

Formally, we define the empirical privacy loss distribu-
tion (ePLD) and the exact PLD as follows:
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Definition 8 (Empirical privacy loss distribution (ePLD)).
Recall from Definition 1 that the PDF of the privacy loss
distribution (PLD) for each atomic event y ∈ Y is given by

ωM,xa:b
(y) =

∑
{o|Lxa:b

(o)=y,o∈U}
Pr[M(xa) = o].

If we have a finite i.i.d. tuple of observations On :=
(oi)

n
i=1 from U , we define the empirical privacy loss dis-

tribution (ePLD) with the reciprocal cumulative empirical
probability distribution function on support Yq = (yj)

q
j=1 =⋃

o∈On {Lx0:1
(o)} ⊆ Y s.t. yj ≤ yj+1 (ascending-sorted),

q ≤ n, y0 = 0, and yq =∞ as

˜ωM,xa:b,On(yj) =
1

n

∑
{o|Lxa:b

(o)≥yj ,o∈On}

1

︸ ︷︷ ︸
=:k

.

Based on ePLD we define the pointwise confidence band.

Definition 9 (Pointwise confidence band of an ePLD).
Given the PLD ωM,xa:b

with support Y = (yi)
m
i=1 and the

ePLD ˜ωM,xa:b,On with support (yj)
q
j=1 = Yq ⊆ Y (cf.

Definitions 1 and 8), we define the ePLD pointwise confi-
dence band (˜ωM,xa:b,On , ω

M,xa:b,On , ω

M,xa:b,On ,Yq, α) for
all yj ∈ Yq and a nominal coverage probability 1− α as

Pr[˜ωM,xa:b,On(yj)− β
α
(yj)︸ ︷︷ ︸

=:

ω

M,xa:b,O
n (yj)

≤
∑
y′≥yj

ωM,xa:b
(y′)] ≥ 1− α

2

Pr[
∑
y′≥yj

ωM,xa:b
(y′) ≤ ˜ωM,xa:b,On(yj) + βα(yj)︸ ︷︷ ︸

=:

ω

M,xa:b,O
n (yj)

] ≥ 1− α

2

We define for each yj ∈ Yq \ {yq}

∀yi, yj < yi < yj+1 :

ω

M,xa:b,On(yi) :=

ω

M,xa:b,On(yj+1)

∀yi, yj < yi < yj+1 :

ω

M,xa:b,On(yi) :=

ω

M,xa:b,On(yj)

which constitutes a step function on the intervals
(yj , yj+1)j .

The Clopper-Pearson confidence band resembles an ex-
act implementation of the pointwise confidence band, mean-
ing that the true coverage probability is never less than the
required nominal coverage probability [26]. Thus, the true
coverage probability might be better than what we report
but is impossible to compute given a limited sample size.
For an ePLD, the Clopper-Pearson confidence band works
as follows:

Lemma 4 (Clopper-Pearson confidence band). Let the
random variable X(n,p) follow the binomial distribution
X(n,p) ∼ Bin(n, p) with k ∈ N successes in n ∈ N
independent trails and success rate p ∈ [0, 1]. The cu-
mulative distribution function (CDF) of X(n,p) is given
by Pr[X(n,p) ≤ k]. Then, the ePLD pointwise confidence
band (˜ωM,xa:b,On , ω

M,xa:b,On , ω

M,xa:b,On ,Yq, α) (cf. Defi-

nition 9) is for all y ∈ Yq and on coverage probability at
least 1− α

ω

M,xa:b,On(y)

= sup
p

{
p | Pr[X(n,p) ≤ n · ˜ωM,xa:b,On(yj)︸ ︷︷ ︸

=:k

] < α/2
}

ω

M,xa:b,On(y)

= inf
p

{
p | 1− Pr[X(n,p) ≤ n · ˜ωM,xa:b,On(yj)︸ ︷︷ ︸

=:k

] < α/2
}
.

For numerical stability, we can equivalently notate ω=
B(α/2, k, n− k+1) and ω= 1−B(α/2, n− k, k+1) with
B(p, β1, β2) as the p-th quantile of the beta distribution with
shape parameters β1, β2.

5.2. Bounds on the ε-attack advantage

Before bounding the ε-attack advantage, we define a
partial ordering on PLDs which orders the reciprocal CDFs
of two PLDs based on the criterion that the reciprocal CDF
of one PLD has to be larger or equal than the reciprocal
CDF of the other PLD on all atomic events y ∈ Y .

Definition 10 (Partial Order on PLDs). Let ω1, ω2 be any
PLDs with support Y as in Definition 1. We say ω1 ≤ ω2

iff

∀y ∈ Y :
∑

y′≥y ω1(y
′) ≤

∑
y′≥y ω2(y

′).

Due to the properties of the sum, this defines a partial
order.

Based on the partial order, we can proof a bucketing
relation which shows that if one PLD is smaller than another
PLD, then the respective ε-attack advantage is also smaller
than the other. We refer to Appendix 1.4 for the proof.

Lemma 5 (Bucketing Relation). Let ω1, ω2 be any PLDs
with support Y as in Definition 1 and δ some ε-attack advan-
tage as in Definition 3. If ω1 ≤ ω2 then δ(ε, ω1) ≤ δ(ε, ω2).

Based on the bucketing relation, we can prove the upper
and lower bound on the ε-attack advantage:

Theorem 2 (Lower and upper bound on the ε-attack ad-
vantage δ). Let (˜ωM,xa:b,On , ω

M,xa:b,On , ω

M,xa:b,On ,Yq, α)
denote the ePLD pointwise confidence band (cf. Definition 9)
and ωM,xa:b

a PLD with support Y = (yi)
m
i=1 s.t. yi ≤ yi+1

(ascending-sorted) and (yj)
q
j=1 = Yq ⊆ Y . Then the

actual ε-attack advantage δ(ε, ωM,xa:b
) is bounded with

δ(ε, ω

M,xa:b,On) ≤ δ(ε, ωM,xa:b
) ≤ δ(ε, ω

M,xa:b,On) with
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a nominal coverage probability of 1− q · α where

δ(ε, ω

M,xa:b,On) = ω

M,xa:b,On(∞)

+
∑

(yj)
q−1
j=1

max
(
0, (1− eε−yj )

· ( ω

M,xa:b,On(yj)− ω

M,xa:b,On(yj+1))
)

δ(ε, ω

M,xa:b,On) = ω

M,xa:b,On(∞)

+
∑

(yj)
q−1
j=1

max
(
0, (1− eε−yj+1)

· ( ω

M,xa:b,On(yj)− ω

M,xa:b,On(yj+1))
)
.

Proof. We convert the cumulative reciprocal PLDs ω, ωto
a non-cumulative PLD step function ω, ω:

∀(yi)m−1
i=1 : ωM,xa:b,On(yi) =

ω

M,xa:b,On(yi)

− ω

M,xa:b,On(yi+1)

∀(yi)m−1
i=1 : ωM,xa:b,On(yi) =

ω

M,xa:b,On(yi)

− ω

M,xa:b,On(yi+1)

ωM,xa:b,On(ym) = ω

M,xa:b,On(ym)

ωM,xa:b,On(ym) = ω

M,xa:b,On(ym).

We write L ≤
α̃

R for an inequality that holds with a

coverage probability of 1 − α̃: Pr[L ≤ R] ≥ 1 − α̃. By
the Bonferroni correction, it suffices to show for a coverage
probability of 1 − α̃ that two inequalities each hold with
coverage probability 1− α̃/2. The Bonferroni correction [15]
follows from the union bound.

We now prove this theorem as follows: in Case 1 we
show that δ(ε, ωM,xa:b,On) ≤

q · α/2
δ(ε, ωM,xa:b

) and in Case 2

we show δ(ε, ωM,xa:b
) ≤

q · α/2
δ(ε, ωM,xa:b,On). By Lemma 5,

it suffices to show that (Case 1) ωM,xa:b,On ≤
q · α/2

ωM,xa:b

and (Case 2) ωM,xa:b
≤

q · α/2
ωM,xa:b,On .

Case 1. We show ∀yi ∈ Y : ωM,xa:b,On ≤
q · α/2

ωM,xa:b
.

W.l.o.g. we assume that yj < yi ≤ yj+1 for all yj ∈ Yq \
{yq}. By Definition 10 and the definition of ω, we have

ωM,xa:b,On(yi) =
∑
y′≥yi

ωM,xa:b,On(y′) = ω

M,xa:b,On(yi)

and by the step-function continuation of ωin Definition 9

= ω

M,xa:b,On(yj+1).

For the other side of the inequality, we have

ωM,xa:b
(yi) =

∑
y′≥yi

ωM,xa:b
(y′)

=
∑

y′≥yj+1

ωM,xa:b
(y′) +

∑
yj+1>y′≥yi

ωM,xa:b
(y′)

≥
∑

y′≥yj+1

ωM,xa:b
(y′).

Thus, putting both sides of the inequality together, we
have

ω

M,xa:b,On(yj+1) ≤
q · α/2

∑
y′≥yj+1

ωM,xa:b
(y′) (1)

which holds with coverage probability 1−α/2 by Definition 9
for a given yj . The point y0 is not contained in any interval.
Yet, by the same argumentation where we have yi = y0,
we conclude ω

M,xa:b,On(y0) ≤
q · α/2

∑
y′≥y0

ωM,xa:b
(y′). For

all yj ∈ Yq, Inequality 1 also holds by the Bonferroni
correction since we use a coverage probability of 1− q · α/2.

We simplify the calculation of δ(ε, ωM,xa:b,On) us-
ing the step-function continuation, i.e. ω

M,xa:b,On(yi) =

ω

M,xa:b,On(yj+1) in the interval yj < yi ≤ yj+1. Thus,
we only have to sum over Yq instead of Y:

δ(ε, ω

M,xa:b,On)

= ω

M,xa:b,On(∞) +
∑

(yi)
m−1
i=1

max
(
0, (1− eε−yi)

· ( ω

M,xa:b,On(yi)− ω

M,xa:b,On(yi+1))
)

= ω

M,xa:b,On(∞) +
∑

(yj)
q−1
j=1

max
(
0, (1− eε−yj )

· ( ω

M,xa:b,On(yj)− ω

M,xa:b,On(yj+1))
)

Case 2 follows similarly; we refer to Appendix 1.5 for
the detailed proof.

If we can not assume a symmetric privacy
loss, i.e. ωM,x0:1

= ωM,x1:0
, then we have to use

the ε-attack advantage δ′(ε, ωM,x0:1
, ωM,x1:0

) =
max(a,b)∈{(0,1);(1,0)} δ(ε, ωM,xa:b

) (cf. Definition 3)
and derive from Theorem 2:

max
(a,b)∈

{(0,1);(1,0)}

δ(ε, ω

M,xa:b,On) ≤ δ(ε, ωM,xa:b
)

≤ δ(ε, ω

M,xa:b,On).

In this case, the coverage probability also changes to 1 −
(q0:1 + q1:0) · α/2 where q0:1 is the size of the support of the
ePLD ˜ωM,x0:1,On and q1:0 is the size of the support of the
ePLD ˜ωM,x1:0,On .

5.3. Bounding the ε-attack advantage of mixnets

From Lemma 3, we know that for every observation the
optimal attacker outputs the precise privacy loss. Hence, we
can conclude that the following two probabilistic experi-
ments are equally distributed for all privacy losses y.

• Experiment 1: Sample a privacy loss ŷ from the real
PLD of a given mixnet µ. If ŷ < y, output 0; otherwise,
output 1.

• Experiment 2: Sample a randomness tape r; compute an
observation from the mixnet µ from r; run the heuristic
adversary and compute a privacy loss ŷ. If ŷ < y,
output 0; otherwise, output 1.
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For any input, we can get a pair of output distributions (the
metadata observations) from the AnoA recipient anonymity
game for a mixnet µ, one distribution for b = 0 and
one for b = 1. So, for the experiment that independently
samples from experiment 2, we conclude from Lemma 4
and Theorem 2 a lower and an upper point for the ε-attack
advantage for each pair of observation distributions from
the AnoA game for µ. Since any pair of distinct recip-
ients R1,R2 constitute worst-case inputs for the recipient
anonymity game with mixnet µ, the upper and lower bound
on the ε-attack advantage hold for any attacker.

Corollary 1. Given a mixnet µ and a pair of recipients
R1,R2, when independently running Experiment 2 from
above q times, δ(ε, ωµ,Ra:b,On) and δ(ε, ωµ,Ra:b,On) are a
lower bound and an upper bound, respectively, for the
ε-attacker advantage δ(ε, ωµ,Ra:b

) for recipient anonymity
with a coverage probability of 1− q · α.

6. Evaluation

6.1. Implementation

We implemented the heuristic adversary in Python as
follows. A single instance of the heuristic adversary starts
by selecting the challenge bit b determining the challenge
recipient for the experiment. We simulate one run of a strat-
ified network, where each user sends exactly one message.
For each message, we determine independently, uniformly
at random the path that this message will take.

We implement three recipients: two challenge recipients
R0 and R1, and a noise recipient Rnoise. Our challenge user
u0 sends a message based on the challenge bit b to the
recipient Rb. All other users, except for one that is chosen
uniformly at random, send their message to Rnoise. The
chosen random user sends a message to R1−b instead.

In our script, we compute and track the probability
distribution from the optimal adversary’s point of view of
where the challenge message is. This probability is spread
over nodes as well as over messages:

• Probability on nodes means that the adversary assigns
a certain probability to the challenge message being in a
given node. This is done for honest nodes only, as the
adversary has deeper insights into the inner workings of
compromised nodes. Messages leaving an honest node each
get a share of the probability from the node and carry it to
the subsequent node (if that is also an honest node).

• Probability on messages means that the adversary is
tracking specific messages and the probability that they are
the challenge message. This is done both at the start of
the protocol (where the challenge message is known) and
whenever messages traverse compromised nodes. In those
instances, they ”carry some of the probability from the
previous node” and keep it attached to the message until
they reach an honest node again.

Our script then proceeds as follows, computing the prob-
abilities from the point of view of the optimal adversary: for

the first round, all nodes are assigned a probability of 0.0.
The challenge message itself is assigned a probability of 1.0
(we initially know that it is the challenge message).

For each node in each round, we track the probability
that the optimal adversary assigns to that node and the
number of messages in that node at that round. We let every
message carry the probability from the previous round to
the next round as follows: if the node is honest, we add the
probability to said node. If the node is dishonest, we keep it
on the message itself (the adversary keeps its beliefs about
the message). For every round, message, and packet we then
proceed as follows:

1) We consider some of the nodes of each round to be
compromised. For ease of implementation, we sort the nodes
per layer so that the compromised nodes are on top. As
all choices are performed uniformly at random, this sorting
does not impact our calculations.

2) We compute for each message and node the propa-
gation of probabilities as follows.

3) If a message carries a probability and this message is
routed through a compromised node, it retains said probabil-
ity and does not affect anything else. The adversary can trace
this message and will retain its beliefs about the message.

4) If a message carries a probability and enters an honest
node, it transfers the probability to that node.

5) If a message leaves an honest node, it carries a part
of the total probability in that node. If the node has a total
probability of p and k messages are inside, each carries p/k.

Eventually, by Lemma 3 we get the privacy loss by the
ratio of the probabilities assigned to Rb and R1−1 at the end
of the run. We then output this privacy loss.

This process assigns to each node the probability of
holding the challenge message. We carry out the calculation
until the messages reach their recipients (R0,R1,Rnoise). The
challenge message, as well as the message from the one uni-
formly chosen other user, reach the two challenge recipients
R0 and R1. All remaining messages reach a special noise
recipient Rnoise. As the adversary knows by the definition of
the game that the challenge message is never sent to Rnoise,
they can ignore those and normalize their probabilities p0
and p1 for R0 and R1 respectively.

For this observation, we can then compute the privacy
loss y for this run as ln pb

p1−b
. If p1−b = 0, we set y = 10

and treated all y = 10 losses as y = ∞ in our privacy
leakage evaluation. By running the script for many iterations
we get a list of observed privacy losses. Each of those is
generated from basic uniformly distributed and independent
coin tosses, i.e., the underlying events generating them have
the same probability, which allows us to treat all observed
privacy losses as equally probable and thus to construct a
privacy loss distribution from them.

6.2. GadgetTester

We also implemented a way to test gadgets such as those
used for Karaoke. In this instance, we generate observations
as above and compute the privacy loss. Additionally, we
check for each observation whether the gadget conditions
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Figure 6: Empirical privacy loss distribution (ePLD) without distinguishing events (top) and ε-attack advantage δ(ε) (bottom)
of three mixnet architectures with the multiplicative leakage ε and additive one δ. We plot the lower δ(ε) and upper bound
δ(ε) of δ(ε) and its empirical estimate δ̃(ε). Each lower and upper bound holds with a coverage probability of 1− 10−30.

(c.f. our discussion of Karaoke in Section 2) are satisfied.
If they are, we keep the observation, otherwise we discard
it. We can then report on the observation that satisfied the
gadget but has the highest observed privacy loss. This can
be used to quickly generate good counter-examples against
the intuition that the gadget leads to an observation where
the adversary cannot win.

6.3. Experiments

We evaluate the heuristic (optimal) adversary for a range
of networks with different user numbers N , lengths R (how
many rounds does a node stay in the network), widths k
(how many nodes per round are there to choose from per
round), compromisation |C| (how many nodes per layer are
compromised). For all those scenarios we compute a range
of measures by first generating many iterations of runs of
our adversary through the network (c.f., our implementation
in Section 6.1). This way we end up with a large number
of sampled privacy loss values. As each of our choices that
lead to the computation of the privacy loss follows a uniform
distribution, we can combine our observed privacy loss val-
ues to form an empirical approximation of the privacy loss
distribution. Based on this distribution we then compute:

• The expected privacy loss of worst-case recipients on
a set of observations On without distinguishing events:
EOn [y]. This is the same as the PLD’s first moment,
which in the literature is also described as ρ(α = 1) in
Rényi Differential Privacy (RDP) [25].

• The empirical ε-attack advantage δ̃(ε).
• A lower bound δ(ε) and an upper bound δ(ε) for

the ε-attack advantage. Each holds with a coverage
probability of 1− 10−30.

Concretely, we evaluate a range of settings, starting from
just R = 3 rounds, up to 15 rounds with a network width of
k = 20, 100, or even 1000 and for a variety of fractions of
compromised nodes. We mostly evaluate the N = 1M user
setting but also 100 users for a range of small networks.

We find that, naturally, anonymity improves significantly
with the number of rounds of mixing and decreases signifi-
cantly with the width of the network, as either of those di-
rectly impacts the probability of packets meeting each other
and mixing. In observing the privacy loss values, we clearly
see that even for generally great networks, the privacy loss
is very often not exactly zero, even if packets generally mix
well. We report cases where the adversary outright or almost
surely wins as distinguishing events δ(∞). For most network
parameters (5+ rounds and not too many nodes) those occur
very rarely as they tend to be the result of packets traveling
on very isolated paths or through compromised nodes.

We present our results in Table 2 and observe that
networks with just R = 3 rounds and a significant width
are not resilient against even 5% compromisation. The ad-
versarial advantage is so high that even our lower bound
reaches 10-20% for networks of width k = 1000, and even
the chance for total anonymity failure is quite significant.
These results confirm existing work in this area. Novel,
however, is the realization that even if the probability for
a distinguishing event is small, the adversarial advantage
can still be notably higher. Even networks with few rounds,
the empirical estimate for the advantage and even the lower
bound on δ(0) is typically higher than even the upper bound
on δ(∞). Most notably, for R = 10+ rounds we did not
observe even a single distinguishing event, but many of the
observations still had a notable privacy loss as reflected in
our estimate and bounds for δ(0).
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TABLE 2: Selected privacy leakages of different mixnet architectures. We report 1) the expected empirical privacy loss or
ε on a set of observations On without distinguishing events, EOn [y], and its standard error σ−; negative values are due
to the sampling error, 2) the lower bound δ(∞) and upper bound δ(∞) of the probability on distinguishing events δ(∞)
and its empirical estimate δ̃(∞), and 3) the lower bound δ(0) and upper bound δ(0) of the attack advantage δ(0) and its
empirical estimate δ̃(0). Each lower and upper bound holds with a coverage probability of 1− 10−30.

MixNet Architecture Privacy Leakage

Name N R k |C| EOn [y]± σ− δ(∞) ≤ δ̃(∞) ≤ δ(∞) δ(0) ≤ δ̃(0 ) ≤ δ(0)

– 100 3 20 1 0.4 ± 1e-3 0.2 ≤ 0.3 ≤ 0.3 0.5 ≤ 0.5 ≤ 0.5
– 100 3 20 2 0.4 ± 1e-3 0.3 ≤ 0.3 ≤ 0.3 0.5 ≤ 0.5 ≤ 0.6
– 100 5 5 1 0.02 ± 4e-4 4e-3 ≤ 6e-3 ≤ 8e-3 0.04 ≤ 0.05 ≤ 0.05
– 100 5 20 1 0.06 ± 3e-4 2e-3 ≤ 3e-3 ≤ 4e-3 0.1 ≤ 0.1 ≤ 0.1
– 100 5 20 2 0.1 ± 5e-4 0.01 ≤ 0.01 ≤ 0.01 0.2 ≤ 0.2 ≤ 0.2

– 1M 3 20 1 0.01 ± 2e-4 6e-3 ≤ 7e-3 ≤ 8e-3 0.01 ≤ 0.01 ≤ 0.02
– 1M 3 20 2 0.05 ± 4e-4 0.02 ≤ 0.03 ≤ 0.03 0.04 ≤ 0.05 ≤ 0.05
– 1M 3 1000 50 0.08 ± 6e-4 0.04 ≤ 0.04 ≤ 0.04 0.1 ≤ 0.1 ≤ 0.1
– 1M 3 1000 100 0.2 ± 1e-3 0.08 ≤ 0.09 ≤ 0.09 0.2 ≤ 0.2 ≤ 0.2
– 1M 5 20 1 8e-5 ± 2e-5 3e-7 ≤ 2e-5 ≤ 1e-4 2e-4 ≤ 2e-4 ≤ 4e-4
– 1M 5 20 2 1e-3 ± 6e-5 2e-4 ≤ 4e-4 ≤ 7e-4 1e-3 ≤ 1e-3 ≤ 2e-3
– 1M 5 20 4 0.01 ± 5e-4 5e-3 ≤ 6e-3 ≤ 9e-3 0.01 ≤ 0.01 ≤ 0.02
Atom 1M 5 100 2 2e-6 ± 3e-6 3e-36 ≤ 5e-6 ≤ 4e-4 5e-5 ≤ 8e-5 ≤ 5e-4
– 1M 5 1000 50 8e-4 ± 9e-5 2e-5 ≤ 2e-4 ≤ 6e-4 3e-3 ≤ 3e-3 ≤ 4e-3
– 1M 5 1000 100 6e-3 ± 3e-4 9e-4 ≤ 2e-3 ≤ 3e-3 0.01 ≤ 0.01 ≤ 0.02

– 1M 10 20 1 -2e-9 ± 2e-9 0 ≤ 0 ≤ 3e-4 3e-9 ≤ 4e-9 ≤ 4e-4
Atom 1M 10 100 2 -1e-11 ± 3e-11 0 ≤ 0 ≤ 5e-4 2e-10 ≤ 2e-10 ≤ 7e-4
Karaoke 1M 10 1000 200 6e-5 ± 5e-5 0 ≤ 0 ≤ 1e-3 2e-4 ≤ 4e-4 ≤ 2e-3
Karaoke 1M 14 20 4 -4e-8 ± 2e-8 0 ≤ 0 ≤ 3e-4 9e-8 ≤ 2e-7 ≤ 4e-4
Karaoke 1M 14 1000 200 -6e-7 ± 7e-7 0 ≤ 0 ≤ 3e-3 2e-6 ≤ 4e-6 ≤ 4e-3
– 1M 15 20 1 9e-14 ± 6e-14 0 ≤ 0 ≤ 3e-4 5e-14 ≤ 2e-13 ≤ 4e-4
Atom 1M 15 100 2 6e-17 ± 4e-17 0 ≤ 0 ≤ 6e-4 5e-16 ≤ 7e-16 ≤ 7e-4

In Figure 6 we present this leakage of mixnets even more
directly inspired by approximate differential privacy (ADP):
for a given privacy parameter ε we present the value δ(ε) we
need so that the protocol is (ε, δ)-differentially private. Here,
we observe a graceful decline of the ε-attack advantage
between the attack advantage δ(0) and the probability of
distinguishing events δ(∞). We also plot the ePLD (cf.
Definition 8) which shows the distribution of privacy leakage
among all observations. All of these have a large spike
at a zero privacy loss in common, yet all follow different
distributions for non-zero losses.

7. Implications and discussion

Our heuristic adversary and its experimental evaluations
have several impacts:

1) Our heuristic adversary by its very existence demon-
strates that attackers can efficiently leverage the biases that
stem from unequal network edge saturation.

2) Our methodology can be adapted to thoroughly eval-
uate any new protocol or existing protocol, or to verify the
gadget used in their security proofs.

3) We draw important insights about the anonymity
guarantees of Karaoke (and its successors), Atom-like net-
works, and guidance towards designing future protocols.

Now we present the specific insights from our experi-
mental evaluations about different mixnet-based protocols.

7.1. Karaoke and its successors

Based on our implementation of the gadget tester in
Section 6.2, we evaluate the gadget used in the anonymity
proof of Karaoke. Our gadget tester demonstrates the inac-
curacy of their proof by producing counter-examples that
break anonymity but satisfy the conditions of their gadget.
Despite the flawed security proof, we want to understand
what kind of guarantees Karaoke-like systems can provide
for different configurations (number of rounds, total number
of messages, percentage of compromised nodes).

If we consider 20% compromised mixnodes in Karaoke,
the adversarial advantage δ̃(0) is estimated to be 2e-7 or 4e-
6 (depending on the width of the network), which could be
considered low enough. However, we note that the lower
bound on the adversarial advantage is quite similar to our
estimate, at 9e-8 and 2e-6 respectively.

The privacy loss slightly increases with the width of the
network, however, it does not increase proportionally: which
implies that increasing the width of the network for the
benefit of scalability does not drastically destroy anonymity.

These insights can be directly translated to the
anonymity guarantees of Yodel [23] and Groove [5]. They
achieve unlinkability at the circuit-level (which user is
talking to which other user), and not at the packet-level:
each packet corresponding to the same circuit would still
be linkable. However, that is expected in their application
scenarios like voice calls.
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7.2. Possible relaxations for Atom

Even though the square shuffle technique achieves a
close-to-uniform shuffle in less than 10 rounds, it requires
all the mixers to be honest. Because of that, Atom needs
to use a cluster of servers. Each such cluster consists of 32
servers in an anytrust model, to emulate such honest mixers.
That introduces a significant overhead on Atom in terms of
latency. Some natural questions are: (1) Can we use smaller
clusters and still achieve strong guarantees? (2) Would that
be strictly better than using mixnets that do not employ such
clusters? (3) Do we still need exactly the same number of
messages on each link?

Our results show that we can actually relax those re-
strictions. Our experiments use one million messages and
100 mixers for every hop/round, and the path of each
message is chosen independently of all other messages.
Even if each mixer has only 4 servers, and a total of 20%
of the network is compromised, the probability that each
mixer is compromised is less than 2%. In such a scenario,
the network achieves strong anonymity guarantees with 10
rounds (the number of recommended rounds also in the
original Atom [20] paper). However, the total number of
servers traveled by a packet is reduced by 1/8, which is a
significant improvement.

If Atom has only 5 rounds (with 4 servers in each
mixing cluster), still the anonymity degree we observed is
significantly stronger than that of Karaoke with 15 rounds.
With a naı̈ve deployment, each message in Atom will travel
through 20 servers on their path, in contrast to only 15
in Karaoke. A clever deployment could further optimize
the communication among servers inside a cluster (espe-
cially in a round-based communication model), and could
significantly improve the end-to-end latency. This invites
the research community to investigate techniques for such
possible optimizations for Atom-like networks.

7.3. General insights about mixnets

We draw the following general insights about mixnets:
mixnets have substantial leakage left out of prior analyses
that stems from small biases in probabilities of making the
same observation of network traffic in different scenarios.
A clever adversary can easily and efficiently leverage this
leakage just by looking at the density of network traffic.
Such an adversary can often be about one order of magni-
tude stronger than one that relies on total anonymity failure.
Methods for measuring and discussing differential privacy
can be an interesting tool for further study of mixnet designs
as they allow to distinguish between small biases (ε) and
possibly catastrophic events (δ).3

Additionally, our evaluation confirms some of the con-
jectures related to mixnet designs: 1) It is well known
that anonymity is difficult to achieve with low latency. Our
experiments confirm that leakage is high when the protocol
has only 3 or 5 rounds (except Atom, which has multiple

3. This δ also captures probability mass outside of the ε bound.

servers in each cluster). Naturally, the leakage we observe
for these networks is significantly higher than the proven
lower bounds of the anonymity trilemma of Das et al. [10],
[12]. 2) When there are 10 or more rounds and many users
(N = 1M ), the probability of total distinguishing events
reduces significantly, to the point where we did not observe a
single such event in our evaluation. Overall privacy leakage
also reduces, but depending on other parameters can remain
an issue. 3) Our evaluations show slow degradation in
privacy with the width of the network. For most existing
provable mixnet designs, the derived guarantees degrade
almost linearly with the width of the network. This provides
evidence of untightness in the proof techniques when there
are many honest messages in the system, and possibly
those proof techniques could be improved to derive tighter
guarantees.

7.4. Interdependent messages

Our adversary uses a very precise and helpful heuristic
to track individual messages. This heuristic is, as we have
shown, optimal for the anonymity notions we consider.
However, there is a notable limitation to the optimality of
our approach: cases in which tracking multiple interdepen-
dent messages helps.

Example. Consider a relationship anonymity game that
slightly differs from the one-message relationship anonymity
game as presented in AnoA: There are two senders, Alice
and Bob, and two recipients, Charlie and Dave. Alice and
Bob both send a message and the goal of the adversary is
to determine whether Alice’s message is sent to Charlie and
Bob’s message to Dave, or whether Alice’s message is sent
to Dave and Bob’s message to Charlie. In such a game,
the adversary can not only win by determining, say, where
Alice’s message goes, but also by determining where Bob’s
message doesn’t go. If an observation only allows for either
Alice’s message to go to Charlie OR Bob’s message to go
to Dave, but not both at the same time (e.g., there is an edge
with weight 1 that would have to be taken by both messages
at the same time), then the adversary can exclude one of the
challenge bits. A weaker version of this interference has the
probabilities of Bob’s message’s path depend on which path
Alice’s message has taken. In such cases, our adversary is
not optimal and its success only presents a lower bound on
the adversarial success.

7.5. Limitations

Our adversary is designed specifically for mixnet-type
systems, and cannot be used for MPC-based protocols [9],
[16] or DC-nets [4], [11], [17]. Moreover, we prove the
optimality of our adversary only for recipient anonymity in
this paper; the same adversary is not optimal for notions
like relationship anonymity (where information about more
than one message can be leveraged), though it will translate
to sender anonymity if it is cast as a mirror of recipient
anonymity. Moreover, our adversary might not be optimal
for other notions (e.g., entropy-based anonymity notion).

13



8. Conclusion

In this paper, we have shown that mixnets exhibit a
hitherto unexplored dimension of leakage that stems from
small (but relevant) biases in a posteriori probabilities of
observations. We have described these biases using the
privacy loss from the differential privacy literature and have
described an adversary that leverages any such biases. Our
adversary is efficient and provably optimal for recipient
anonymity and could be expanded to other notions as the
field explores this leakage in the future. Based on this opti-
mal adversary, we have also performed extensive empirical
evaluations of mixnet structures to examine the impact of the
number of rounds, the width of the network, and the degree
of compromisation on the privacy loss and consequently on
the adversarial advantage. Taking a posteriori biases into
account leads to far tighter lower bounds (often by about one
order of magnitude) than just quantifying the probability of
a total breakdown of anonymity. Our lower bounds provide
guidance away from leaky mixnet designs, e.g., using too
few rounds, and our empirical estimates provide a good
overview of can be expected.
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Appendix

1. Postponed proofs

1.1. Proof for Lemma 1.

Proof. Given that in round r a node i has n messages in it
and edges w1, . . . , wk, we compute how many many ways
there are to distribute those n messages over the k nodes
to which there are edges. This computation boils down to a
rather straight-forward mathematical calculation.

Looking at any one edge wj , then given the partial in-
formation about its weight and about which n messages are
in node i, there are

(
n
wj

)
= n!

wj !·(n−wj)!
many combinations

of messages we could select. For the next node, we then
have n′ = n− wj messages left to choose from.

For any arbitrary ordering of edges, starting from the
first edge and iterating over them all, keeping in mind that
n =

∑k
j=1 wj , the general form is that there are

n! ·
∏k−1

j=1 (n−
∑j

h=1 wh)!∏k
j=1 wj ! ·

∏k
j=1(n−

∑j
h=1 wh)!

=
n!∏k

j=1 wj ! · 1
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combinations in total and hence that many partial instances
consistent with the information about the node.

1.2. Proof for Lemma 2.

Proof. Let w = [w1, . . . , wk] denote the edge weights,
where k is the number of nodes in the subsequent layer.
Note that from Lemma 1 we know that the total number of
partial instances compatible with information about this one
node is

∑k
j=1 wj !∏k
j=1 wj !

= n!∏k
j=1 wj !

. If the message m goes to node
x with edge weight from i to x being wx, the following two
things will happen:

1) The adjusted edge weight w′ (of all remaining mes-
sages) going to node x decreases by 1, i.e., w′

x = wx−1
2) Naturally, the sum of adjusted edge weights is∑k

j=1 w
′
j =

∑k
j=1 wj − 1 = n− 1.

By Lemma 1 we then compute the number of instances
that have message m travel to node x as:

(
∑

j w
′
j)!∏

j w
′
j !

=
(
∑

j w
′
j)!∏

j ̸=x wj ! · wx!
=

(
∑

j w
′
j)!∏

j wj ! · 1
wx

= wx ·
(
∑

j w
′
j)!∏

j wj !
= wx ·

(n− 1)!∏
j wj !

We see that the number of instances has a common factor
of (n−1)!∏

j wj !
for every choice of node x. The only impact of

choosing a node x is the factor wx. Since the total number
of partial instances was n!∏k

j=1 wj !
it directly follows that a

fraction of wx

n of those has message m in node x.

1.3. Proof for Lemma 3.

Proof. We show this by induction.
Induction start: The message is in a known node in one
layer. We apply Lemma 2 and get that for each of the
edge weights, the probability that the message is in the
corresponding node in the next layer is a fraction which
is determined by the edge weight. That’s precisely what the
forward adversary outputs.
Induction step: Assume that we have a (correctly com-
puted) distribution of message probabilities over the nodes
in a layer. More precisely, for every node i in the current
layer, we have that a fraction of instances fi has the message
in that node. By Lemma 2 we can compute a fraction fi,j
of each of those instances that will subsequently place the
message in node j of the next layer if it was in node i pre-
viously. The total fraction of instances that place a message
in a node j then is given by fj =

∑
i(fi · fi,j), which is

precisely what the forward adversary computes.

1.4. Proof for Lemma 5.

Proof. First we observe that for all 0 ≤ c ≤ d, and all
yi, yj ∈ Y with i ≤ j we have

max
(
0, c · (1− eε−yi)

)
≤ max

(
0, d · (1− eε−yj )

)
≤ b

(2)

By assumption ω1 ≤ ω2, the partial order Definition 10,
and ascendingly-sorted Y = (yi)

m
i=1 s.t. yi < yi+1 of

Definition 3, we know that for all yi∑
yj∈{yi,...,ym,∞} ω1(yj) ≤

∑
yj∈{yi,...,ym,∞} ω2(yj).

We now show the item of this lemma directly. By Defini-
tion 3, we know that

δ(ε, ω2)

=
∑

{yi}m
i=1

max
(
0, (1− eε−yi) · ω2(yi)

)
+ ω2(∞)

=
∑

{yi}m−1
i=1

max
(
0, (1− eε−yi) · ω2(yi)

)
+ ω2(∞)

+ max
(
0, (1− eε−ym) · ω2(ym)

)
+ ω1(∞)− ω1(∞)

by assumption ω2(∞) − ω1(∞) ≥ 0 and by Equation (2)
with d = ω2(∞)− ω1(∞) we know that

≥
∑

{yi}m−1
i=1

max
(
0, (1− eε−yi) · ω2(yi)

)
+ ω1(∞)

+ max
(
0, (1− eε−ym) · (ω2(ym) + ω2(∞)− ω1(∞))

)
=

∑
{yi}m−1

i=1

max
(
0, (1− eε−yi) · ω2(yi)

)
+ ω1(∞)

+ max
(
0, (1− eε−ym)

· (ω1(ym) +
∑

yj∈{ym,∞}

ω2(yj)− ω1(yj))
)

we apply Claim 1 with k = m

≥
∑

{yi}m−2
i=1

max
(
0, (1− eε−yi) · ω2(yi)

)
+ ω1(∞)

+ max
(
0, (1− eε−ym−1)

· (ω1(ym−1) +
∑

yj∈{ym−1,ym,∞}

ω2(yj)− ω1(yj))
)

+max
(
0, (1− eε−ym) · ω1(ym)

)
we repeat Claim 1 for k decreasing from m− 1 to 2

≥ ω1(∞) + max
(
0, (1− eε−y1)

·
(
ω1(y1) +

∑
yj∈{y1,...,ym,∞}

ω2(yi)− ω1(yi)
))

+
∑

{yi}m
i=2

max
(
0, (1− eε−yi) · ω1(yi)

)
since

∑
y ω1(y) =

∑
y ω2(y) = 1

=
∑

{yi}m
i=1

max
(
0, (1− eε−yi) · ω1(yi)

)
+ ω1(∞)

= δ(ε, ω1).

Claim 1. For all yk ∈ {y2, . . . , ym},

max
(
0, (1− eε−yk−1) · ω2(yk−1)

)
+max

(
0, (1− eε−yk)

·
(
ω1(yk) +

∑
yj∈{yk,...,ym,∞}

ω2(yj)− ω1(yj)
))
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by assumption ∀yj : ω2(yj) − ω1(yj) ≥ 0 and by
Equation (2) with k − 1 ≤ k and c = d =∑

yj∈{yk,...,ym,∞} ω2(yj)− ω1(yj)

≥ max
(
0, (1− eε−yk−1)

·
(
ω2(yk−1) +

∑
yj∈{yk,...,ym,∞}

ω2(yj)− ω1(yj)
))

+max
(
0, (1− eε−yk) · ω1(yk)

)
= max

(
0, (1− eε−yk−1)

·
(
ω1(yk−1) +

∑
yj∈{yk−1,...,ym,∞}

ω2(yj)− ω1(yj)
))

+max
(
0, (1− eε−yk) · ω1(yk)

)
.

1.5. Proof for Case 2 from Theorem 2. We show
∀yi ∈ Y : ωM,xa:b

≤
q · α/2

ωM,xa:b,On . W.l.o.g. we assume that

yj ≤ yi < yj+1 for all yj ∈ Yq \ {yq}. By Definition 10
and the definition of ω, we have

ωM,xa:b,On(yi) =
∑
y′≥yi

ωM,xa:b,On(y′) = ω

M,xa:b,On(yi)

and by the step-function continuation of ωin Definition 9

= ω

M,xa:b,On(yj).

For the other side of the inequality, we have

ωM,xa:b
(yi) =

∑
y′≥yi

ωM,xa:b
(y′)

=
∑
y′≥yj

ωM,xa:b
(y′)−

∑
yj≥y′>yi

ωM,xa:b
(y′)

≤
∑
y′≥yj

ωM,xa:b
(y′).

Thus, putting both sides of the inequality together, we
have ∑

y′≥yj

ωM,xa:b
(y′) ≤

q · α/2

ω

M,xa:b,On(yj)

which holds with coverage probability 1−α/2 by Definition 9
for a given yj . yq is not contained in any interval, yet by the
same argumentation where we have yi = yq, we conclude∑

y′≥yq
ωM,xa:b

(y′) ≤
q · α/2

ω

M,xa:b,On(yq). For all yj ∈ Yq,

this inequality also holds by the Bonferroni correction since
we use a coverage probability of 1− q · α/2.

We simplify the calculation of δ(ε, ωM,xa:b,On) us-
ing the step-function continuation, i.e. ω

M,xa:b,On(yi) =
ω

M,xa:b,On(yj) in the interval yj ≤ yi < yj+1. Thus, we
only have to sum over Yq instead of Y:

δ(ε, ω

M,xa:b,On)

= ω

M,xa:b,On(∞) +
∑

(yi)
m−1
i=1

max
(
0, (1− eε−yi+1)

· ( ω

M,xa:b,On(yi)− ω

M,xa:b,On(yi+1))
)

= ω

M,xa:b,On(∞) +
∑

(yj)
q−1
j=1

max
(
0, (1− eε−yj+1)

· ( ω

M,xa:b,On(yj)− ω

M,xa:b,On(yj+1))
)

Since we upper bound the ε-attack advantage we upper
bound the scale the privacy loss of the interval (yi, yi+1)i
with the rightmost element in the interval, i.e. (1−eε−yi+1),
for the lower bound we lower bound the scale with the
leftmost element, i.e. (1− eε−yi).

2. Example calculation of randomness tapes

In Figure 1 we have seen an example where we claimed
that if u0 sends their message to R0, there are exactly 5
instances of randomness tapes that can make that happen
and if u0 sends their message to R1, there are exactly 3
instances. Here we go through those instances.

Note that the randomness tapes contain the following
pieces of information:

• Which message travels through which node in which
round.

• Which of the senders u1, u2, u3 has been randomly
selected to send the message to R1−b.

Each choice is made uniformly at random, i.e., each instance
of randomness tapes occurs with exactly the same probabil-
ity in our game. Not all of those lead to our observation
from Figure 1.

For ease of readability, we describe the randomness tapes
of each user as follows: [a,b,c,R], where a is their choice
for the first node, b is their choice for the second node, c is
their choice for the third node, and R is the recipient they
send their message to.

If u0 sends their message to R0. These are all in-
stances of randomness tapes that can make this happen:

1)

u0 0 0 0 R0

u1 0 0 0 RNoise
u2 0 1 0 RNoise
u3 1 1 1 R1

2)

u0 0 0 0 R0

u1 0 0 0 RNoise
u2 0 1 1 R1

u3 1 1 0 RNoise

3)

u0 0 0 0 R0

u1 0 1 0 RNoise
u2 0 0 0 RNoise
u3 1 1 1 R1
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4)

u0 0 0 0 R0

u1 0 1 1 R1

u2 0 0 0 RNoise
u3 1 1 0 RNoise

5)

u0 0 1 0 R0

u1 0 0 0 RNoise
u2 0 0 0 RNoise
u3 1 1 1 R1

As we can see, there are indeed exactly 5 instances of
randomness tapes that lead to our observation.

If u0 sends their message to R1. We now list the
instances of randomness tapes when u0 sends their message
to R1. As we can see, they only differ in which of the
messages was randomly selected to be the message sent to
R0.

1)

u0 0 1 1 R1

u1 0 0 0 R0

u2 0 0 0 RNoise
u3 1 1 0 RNoise

2)

u0 0 1 1 R1

u1 0 0 0 RNoise
u2 0 0 0 R0

u3 1 1 0 RNoise

3)

u0 0 1 1 R1

u1 0 0 0 RNoise
u2 0 0 0 RNoise
u3 1 1 0 R0
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