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Abstract—While popular messaging apps already offer end-to-
end confidentially, end-to-end metadata privacy is still far from
being practical. Although several meta-data hiding systems
have been developed and some like Tor have been popular,
the proposed solutions lack in one or more aspects: the Tor
network is prone to easy low-resourced attacks, and most
others solely focus on anonymity for senders or receivers but
do not both. Some recent solutions do consider end-to-end
anonymity, however, they put significant restrictions on how
users use the system. Particularly, the receivers must stay
online or trust online servers that receive messages on behalf
of receivers.

This work presents a scalable end-to-end anonymity mes-
saging system, Kerblam, that overcomes the mentioned is-
sues and restrictions. It stems from a key observation that
combining the recently-emerged oblivious message retrieval
(OMR) primitive with oblivious shuffling can offer the desired
end-to-end anonymity without severely restricting the number
of messages a sender may send or a receiver may receive.
We build our solution using two non-colluding servers and
recent OMR protocol HomeRun and a compatible oblivious
shuffle protocol. We then extend our solution to allow larger
messages by employing a novel two-server distributed oblivious
RAM technique, called ORAM−. Our performance analysis
demonstrates that with the increase in the number and size of
messages, the performance improvement brought by ORAM−

becomes higher. Specifically, for 220 messages of size 1 KB,
our scheme only needs 5.577 s to transmit a message.

1. Introduction

Many popular communication applications, such as Sig-
nal and WhatsApp, employ end-to-end encryption to safe-
guard message content between parties. However, commu-
nication metadata—such as who communicated with whom
and when [1]—can still lead to severe consequences.

Extensive research (e.g., [2], [3], [4], [5], [6]) has al-
ready been conducted to protect communication metadata.
Specifically, communication metadata could be abstracted as
the linkability between a sender and a message, and/or the
linkability between a message and a receiver. Many prior
works either break the linkability between the message and
the sender [7], [8], [9], or between the message and the
receiver [10], but not both. In this work, we aim to break

the linkability on both sides to protect the privacy of the
sender as well as the receiver, and we call this unlinkability
End-to-End Unlinkability (EE-UL), which is the same as
“Both-Side Message Unlinkability” defined in [11].

There are mailbox-based systems [3], [12], [13], [14]
that attempt to hide the link between the sender-receiver pair
in an active group of clients who send messages in batches.
They either require the sender and the receiver to trust
each other (weaker security) and/or an expensive dialing
protocol [15] to set up the mailboxes. Such requirements
limit the application scenarios where those systems can be
used, especially for asynchronous communications (when
the sender wants to send messages without any synchro-
nization or setup with the corresponding receiver or to a
receiver who is not active at the time).

There are a few designs that attempt to protect the
privacy of both the sender and the receiver by mixing the
messages. In this way, both the sender-message linkability
and message-receiver linkability are broken. However, they
suffer from various drawbacks:

• Many application scenarios (e.g., messaging, pay-
ments) require to support asynchronous retrieval, which
means that a sender can send a message to a receiver even
if the receiver is not currently online, and the receiver can
retrieve the message whenever it comes online. However,
the current approaches cannot naturally support it. To solve
this issue, Loopix [16] and AnonPOP [17] rely on online
servers (called Gateways in the Nym deployment [18] of
Loopix) to receive messages on the behalf of receivers.
Such strategies require additional trust assumption on such
Gateways and still can become vulnerable to intersection
and traffic-analysis attacks [19].

• Tor [2], with its onion service functionality, can pro-
vide protection for both the sender and receiver side. It is
extremely popular for its low latency and low bandwidth
overhead. However, there have been a large number of works
(e.g., [20], [21], [22], [23]) that successfully attacked Tor
using low resources. Moreover, Tor cannot support asyn-
chronous message retrieval.
Application Scenarios of End-to-End Unlinkability
(EE-UL). There are many scenarios where the privacy of
both the sender and the receiver is equally important. Specif-
ically, as mentioned in [24], “anonymous social media plat-
forms have gained popularity as havens for individuals seek-
ing to express themselves freely without fear of judgment



or exposure.” On anonymous social media platforms, each
user has an anonymous account (namely, an address). Users
can communicate with each other without leaking their real-
world identifications. Breaking linkability only either on the
sender or on the receiver side cannot satisfy the privacy
requirements of such anonymous social media platforms.

Another important application scenario is achieving pri-
vacy for transactions on Blockchains. With the property of
EE-UL the payment recipient could provide only a wallet
address to protect their real identity. At the same time, the
sender can benefit from hiding their identity, even from the
wallet owner, and avoiding revealing association with the
wallet or the possibility of being profiled/blackmailed.

1.1. Our Contribution

In this work, we design an anonymous messaging sys-
tem, called Kerblam, which achieves the End-to-End Un-
linkability (EE-UL), while avoiding the above drawbacks.
We summarize our contributions below.
End-to-End Anonymity without Limitations. We design
an anonymous messaging system, called Kerblam, that en-
joys stronger anonymity, protecting the privacy of both
sender and receiver. Kerblam is useful for scenarios where
the sender and the receiver not only desire to remain anony-
mous to others but also from each other. At the same time,
we depart from batch-mixing and round-based designs. As a
benefit, we can easily allow sending and receiving messages
asynchronously. We formally analyze the security of our
scheme against global passive adversaries, as well as protect
against relevant active attacks.
Highly Scalable Protocol. We observe that combining
a fully-fledged oblivious message retrieval (OMR) proto-
col and oblivious shuffling protocol can obtain end-to-end
anonymity without limitations. However, it is not scalable
enough to support long messages (e.g., of size 1 KB). To
solve this problem, we introduce a new variant of ORAM,
called ORAM−, which is a weaker version of standard
ORAM but is enough for communication scenarios. By
introducing ORAM−, we improve the performance for 220

messages of size 1 KB by a factor of 7 (please refer to
Table 3 for more details). When there are 220 messages
stored by the servers, and each message is of size 1 KB
stored, the wall-clock time cost of transmitting a message is
38.942 s using a single thread and 5.577 s using 16 threads.
Novel Variant of ORAM: ORAM−. Our design of ORAM−

could be of independent interest to scale other designs. We
provide a general construction of ORAM− based on tree-
based ORAM, and it is particularly suitable for metadata-
private message transmission systems. Compared to the
standard ORAM, the main differences are (1) “write” and
“read” operations are allowed to be distinguished, (2) block
ID can be randomly chosen from a large space, and (3) the
total number of blocks is allowed to vary. These adaptations
allow significant performance for Kerblam (c.f. Table 3). We
give a new formal definition for ORAM− and show that our
construction is provably secure under our definition.
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Figure 1: System Overview. We have two servers. Each
receiver is associated with an address/key pair, and the
address will not leak the receiver’s real identity. When a
sender wants to send a message mi to the receiver associated
with address Addri. The sender sends (mi,Addri) in an “en-
crypted” version to the two servers; the receiver uses Keyi to
retrieve the message mi without leaking (mi, (Addri, keyi)).

1.2. Related Work

Based on recent works [1], [11], anonymity notions
can be categorized into two main (non-exclusive) types: (1)
privacy for senders, and (2) privacy for receivers. Different
protocols can provide either or both of these properties with
different anonymity levels; Our design achieves both, and we
call it End-to-End Unlinkability. Below we discuss different
design paradigms of anonymous messaging systems and the
kinds of anonymity guarantees they can provide.
Mixnets. Mixnet-based designs [7], [9], [25], [26] can
achieve sender anonymity for anonymous broadcast by shuf-
fling the messages through several layers of mixing nodes.

Some mixnets [13], [27], [28] deviate from anonymous-
broadcast setting and introduce mailboxes where the sender-
receiver pair of a message needs to agree on a shared secret.
Although, these systems attempt to hide the link between
the sender and the receiver from a third-party observer,
the sender and receiver need to trust each other or need
to use an expensive dialing protocol to set up mailboxes.
This additional trust requirement makes the anonymity guar-
antee strictly weaker than either sender anonymity or re-
ceiver anonymity [11]. These designs implement mixing in
batches, and that adds several restrictions: (1) a sender can
only send messages to online receivers, (2) the anonymity
set is limited to a batch.

To achieve receiver-side privacy, and to allow the re-
ceivers to retrieve messages asynchronously, the Nym [18]
deployment of Loopix [16] introduces Gateway servers:
A Gateway server can collect the messages on behalf of
the receivers, and the receiver can retrieve messages when
they come online. They additionally employ cover traffic
and rate-limiting for download/retrieval to obfuscate the
volume metadata. Unfortunately, without the employment
of a strong Oblivious Message Retrieval (OMR) protocol,
the system is vulnerable to intersection and traffic-analysis
attacks [19] with its current deployment parameters. Prov-
able mixing guarantees for Loopix-like systems only exist
for sender anonymity and would require really expensive
latency overheads [29].
MPC-based Designs. There are MPC-based designs [6],
[14], [30], [31] that realize some version of secure shuffle
or private-writing to achieve guarantees similar to sender
anonymity. Express [3] additionally employs mailboxes,
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however, deviates from the requirements of batch-processing
and the sender-receiver trust requirement. Express can only
hide the link between the sender and the mailbox, but does
not hide who reads from the mailbox: in that sense, Express
only achieves sender anonymity.

Other designs like HomeRun [10], Private Signaling
(two-server version) [32] realize Oblivious Message Re-
trieval (OMR) to achieve strong privacy for receivers, but
they cannot protect the privacy for senders.

Our design Kerblam employs MPC in a two-server
setup: in terms of system setup, Kerblam is identical to
Express [3], HomeRun [10], and Private Signaling (two
servers) [32]. However, in contrast with other MPC-based
designs, it achieves both sender anonymity and receiver
anonymity, where the sender and the receiver might not
even trust each other, by combining secure shuffle and OMR
techniques.
Other Not-so-related Anonymous Messaging Systems.
Tor [2] is really popular for its low latency and low
bandwidth overhead; and can provide anonymity for both
sides with its onion service functionality. However, such
low-latency and low-bandwidth networks can achieve only
weak anonymity guarantees [33], [34], and there are many
demonstrated attacks [20], [21], [22], [23] against Tor.

Dining-cryptographer network (DC-net) based sys-
tems [8], [35], [36] can achieve strong sender anonymity for
anonymous broadcast, however, they cannot provide privacy
for the receiver-side.

PW-Panda and SW-Panda [37] achieve properties some-
what similar to our ORAM−. However, in PW-Panda, the
creator of a message cannot restrict who reads the message.
On the other hand, in SW-Panda, a client can access only
their own data, unless there are some explicit key-sharing
mechanisms among clients. Because of such limitations,
and its use of expensive primitives like fully-homomorphic
encryptions, it is not straightforward to adopt such systems
to design end-to-end anonymous messaging systems.

Organization. We give the technical overview in Section 2,
including the system setting and key ideas. In Section 3,
we recollect the building blocks used in our work. Then in
Section 4, we give the formal description of our scheme. The
security analysis and performance evaluation can be found
in Section 5 and Section 6 respectively. Section 7 provides
the concluding remarks.

2. Technical Overview

2.1. System Setting

As shown in Figure 1, there are two servers that assist the
users with communications. Each receiver is associated with
an address and the corresponding secret key, and we assume
that the potential senders can obtain the address without
knowing the real-world identity of the receiver. For example,
the address could be an account on a social media platform,
and other users on the social media platform can find the
address but do not know the identity behind the address.

Function Goals. When a sender wants to send a message
mi to a receiver associated with Addri, the sender sends an
“encrypted version” of (mi,Addri) to the two servers. Then
the receiver sends a retrieval request to the two servers, prov-
ing the possession of the corresponding secret key Keyi and
without leaking Addri. Finally, the two servers send back
the message mi in an “encrypted” form to the receiver. We
only assume that the total number of unretrieved messages is
up to a predetermined value N , but do not limit the number
of messages waiting to be retrieved by a certain receiver.
Security Goals. Our work aims to protect the privacy of
both senders and receivers. This means that even though
the sender colludes with one of the servers, they cannot
find which party retrieved the message, and vice versa. The
formal security definition is given in functionality Fanon

(see Figure 12).
Our protocol is suitable for situations where the sender

and receiver do not know each other and do not want to
reveal their identities to each other. “Address” is the identity
in our system, and sending a message to a receiver refers
to sending the message to an address. We assume that
the address will not leak the real-world identity, and the
adversary can recognize the entity sending messages to the
two servers, e.g., via IP addresses. We do not protect who
is sending or retrieving messages, but we do protect the
linkability between messages and entities.
Trust Assumption. We assume that the two servers are non-
colluding and will not have detectable malicious behaviors,
as in the previous work [3], [10], [32]. We explain how
we defend against malicious behaviors in Section 5.3.2.
We assume senders and receivers can be malicious and can
collude with one of the two servers.

2.2. Key Idea

Our work starts with a key observation that combining
an oblivious message retrieval (OMR) and an oblivious
shuffling can obtain an end-to-end anonymous messaging
system. However, a direct combination has poor scalabil-
ity and cannot support long messages on large scales. To
address this issue, we introduce a new variant of ORAM,
called ORAM−, and use distributed ORAM− to achieve
scalability. Next, we will first introduce the key observation
and explain how to achieve scalability.

The previous work either does not support asynchronous
retrieval or relies on mailbox-based methods that limit the
number of messages a receiver can receive. The recent
research [10], [38], [39] on Oblivious Message Retrieval
(OMR) has gradually overcome these limitations. Moreover,
we observe that OMR can be changed to achieve end-to-end
anonymity while keeping the merits.

OMR was proposed to allow the receiver to retrieve
her transactions submitted on blockchains without leaking
which messages are retrieved. Therefore, OMR protects the
receiver’s privacy. It can also be used for messaging systems
without blockchains, by allowing the senders directly to send
messages to the server(s). However, since the receiver knows
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which message is retrieved and the server(s) knows who is
the sender of each message, if the receiver colludes with
the server or one of the servers, they can collaboratively
find who sent the message. Therefore, the key to further
protecting the sender’s privacy is to guarantee that the
server(s) does not know the sender of each message.

To this end, we obliviously shuffle (i.e., the permutation
is not known by anyone, and please see Figure 5 for more
details) the list(s) stored on the server(s), before providing
information to the receiver. In this way, for a retrieved
message, the server(s) cannot link it to its sender. The OMR
works [10], [38], [39] all can be changed to achieve end-to-
end anonymity through the way. However, to date, there are
still no efficient single-server oblivious shuffling protocols,
and the single-server OMRs [38], [39] are also not efficient
enough. Therefore, we choose HomeRun [10], the two-
server OMR scheme, as a basis to achieve our end-to-end
anonymous messaging system.

2.3. Basic Construction

Next, we first briefly recall HomeRun and then give our
basic construction.
Recall HomeRun. The design framework is shown in Fig-
ure 2. Each server maintains a list consisting of pairs, with
each pair containing a label and a message. The label is used
to identify whether a message is pertinent to the receiver
requesting retrieval. The flow of HomeRun is as follows.

• Sending:
– The sender that intends to send the message m,

generates labels L and L′ according to the address of
the receiver, and sends (L,m) and (L′,m) to Server1
and Server2, respectively;

– The two servers append (L,m) and (L′,m) to their
own lists, respectively.

• Retrieval:
– The receiver generates two labels Lr and L′

r using
the secret key of her address, and sends Lr and L′

r

to Server1 and Server2, respectively;
– The two servers interact with each other to gen-

erate two bit-vectors, b⃗(1) and b⃗(2), from which
the receiver can recover the pertinent indexes (if
b⃗(1)[i] + b⃗(2)[i] = 1, i is a pertinent index);

– The receiver uses the pertinent indexes to retrieve
the pertinent messages from the two servers through
Private Information Retrieval (PIR).

HomeRun does not consider the privacy of senders and
does not hide the content of messages from the servers (as
the messages are published on the blockchain1). Next, we
will explain how to achieve EE-UL while protecting the
content of messages based on HomeRun.
Our Basic Scheme. To further hide the content of each
message, the sender splits the message m into two shares
[m]1 and [m]2 such that m = [m]1+[m]2. Then, the sender

1. The messages on blockchain may also be some ciphertexts.

Receiver

PIR

Sender

Figure 2: Design Framework of HomeRun [10]. For each
message, each server stores a label share. Then, the receiver
sends request label shares Lr and L′

r to the two servers
respectively. The two servers compute b⃗1 and b⃗2 and send
back the two-bit vectors to the receiver. The receiver re-
covers the pertinent indexes using b⃗1 and b⃗2, and then uses
these indexes to retrieve the messages via PIR.

sends (L, [m]1) and (L′, [m]2) to the two servers, respec-
tively. In this case, each server cannot learn the message m,
and the lists maintained by the two servers are changed to
those shown in Figure 3a. In our protocol (see Section 4),
the labels L and L′ are instantiated by address shares and
associated strings. For simplicity, we just use the concept of
label here.

Then, we leverage the oblivious shuffling FShuffle (see
Figure 5) to protect the privacy of the sender. Specifically,
as shown in Figure 3b, after receiving the labels Lr and L′

r

from the receiver, respectively, the two servers first generate
the two-bit vectors, b⃗1 and b⃗2, respectively, as in HomeRun.
Instead of sending the bit vectors to the receiver, the two
servers obliviously shuffle the bit vectors and the message
vectors using the same permutation that is not known by
anyone. Then, the two servers can interact with each other
to recover the pertinent indexes. Note that, different from
HomeRun, the two servers here do not know the original
indexes, so the two servers can open the pertinent indexes by
themselves. Finally, the two servers send the corresponding
shares of the pertinent messages to the receiver, without
using PIR.

It is easy to see that after the obliviously shuffling,
neither the receiver nor the servers can determine which
sender provided the pertinent messages, and thus the privacy
of the sender is protected. On the other hand, the privacy of
the receiver is still protected, as the sender and the servers
cannot know which original messages are retrieved by the
receiver. Note that we are not intending to protect the num-
ber of messages retrieved by a receiver. In addition, different
from the existing works in Type 3, we mix a message among
all the messages maintained by the two servers, rather than
only the messages in a round. The efficiency of our work
benefits from the recent work [40] by Peceny et al. This
work designed a new oblivious shuffling protocol with high
performance (please see Table 1 for more details).
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Figure 3: Basic Scheme for Short Messages. The two servers store the label shares and message shares. After receiving
a request (including Lr or L′

r) from a receiver, the two servers collaboratively compute vectors b⃗1 and b⃗2. Then, the two
servers obliviously shuffle the message share list and bit list using the same permutation π. At last, the two servers recover
b⃗1[π(i)] + b⃗2[π(i)], if b⃗1[π(i)] + b⃗2[π(i)] = 1, the server sends the corresponding message share [m]π(i),j to the receiver.

However, the communication and computation complex-
ity of the oblivious shuffling designed by Peceny et al. [40]
is O(nℓ). Therefore, if the message size ℓ and the number of
messages n are both large (e.g., ℓ = 1 KB and n = 220), the
performance of this basic scheme will drastically decrease.
To solve this problem, we additionally introduce a variant
of ORAM, such that the basic scheme is only used for pro-
viding indexes, and messages are maintained by ORAM−.

2.4. Scaling via a New Variant of ORAM

As mentioned before, the above basic scheme is not effi-
cient enough for a significant number of long messages. To
avoid the communication and computation cost of O(nℓ) for
each retrieval, we leverage a variant of ORAM structure to
maintain the messages. Specifically, we change the message
shares in Figure 3 to index shares, and then the two servers
use the index shares to retrieve the corresponding messages
from a variant of ORAM. In this way, the oblivious shuf-
fling only involves the index, which is much shorter than
messages. Next, we will detail the variant of the ORAM
structure.

In cloud storage scenarios [41], [42], [43], a client stores
their data on a remote server and will access their data later
from the server. To hide the access pattern of the client,
ORAM was proposed. Therefore, originally, ORAM was
used for a client who owns the data and does not have
the motivation to destroy the data, and the access pattern
includes an arbitrary number of read and write operations.
Please see Definition 1 and Definition 2 for more details
of ORAM. Compared with the original ORAM, the variant
needed in this work has the following differences:

• (D1): Senders and receivers are ordinary users in the
system, and thus may misbehave. Therefore, we need an
ORAM structure that can support malicious clients.

• (D2): There are many senders and receivers that need
to access the messages. Therefore, we need an ORAM
structure that can support multiple clients.

• (D3): We are considering an anonymous messaging
system where it is not necessary to hide whether access
involves sending or retrieving data from the servers. Sending
and retrieval correspond to the write operation and the read

operation in ORAM, respectively. Therefore, we do not need
the ORAM structure to hide the type of access.

• (D4): Our anonymous messaging system only consid-
ers that a sender sends a message to a receiver, and thus
a message can only be read (i.e., retrieved) once after it
is written (i.e., sent) into the ORAM structure. Therefore,
the access pattern for a block in the ORAM structure is
the sequence {write, read}. Combined with the above D3,
we know that the variant of ORAM just needs to break
the linkability between the write operation and the read
operation.

Why Choose ORAM in Secure Computation Setting.
ORAM in the malicious multi-client setting was first con-
sidered and formalized by Maffei et al. [44]. Later, Chen et
al. [45] significantly improved the prior work by letting two
servers emulate all operations that were previously taken
by the client; therefore, during an operation, a client only
needs to secretly share the corresponding index with these
two servers, and no malicious behavior can be performed
by a client. In this work, we use the same idea to support
multiple malicious clients. This idea essentially follows the
concept of ORAM in the secure computation setting which
is first studied by Gordon et al. [46]. We refer to Section 3.1
for more details.

One approach towards realizing ORAM in the secure
computation setting, denoted as ORAM-SC, is to design an
ORAM scheme with a lower circuit complexity on the client
side and then realize it by letting servers jointly emulate
all client operations. Among all ORAM schemes includ-
ing hierarchical ORAM [47], square-root ORAM [47] and
tree-based ORAM [48], [49], Circuit ORAM, a tree-based
ORAM, proposed by Wang et al. [50] shows an optimal
circuit complexity both asymptotically and practically. A
recent generation of work for ORAM-SC [51], [52], [53]
derives from the function secret sharing [54], [55], and
uses a list to store data. These protocols have low round
and communication complexity but a linear computational
complexity. As a result, these protocols show a better practi-
cal performance in some specific settings even though their
asymptotic complexity is worse than Circuit ORAM.

Next, we will explore the application of the tree-based
ORAM-SC within our anonymous messaging system. In
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Position Map

Figure 4: Tree-based ORAM

Appendix A, we also explain why we do not choose the
list-based ORAM-SC in our system. In a secure computation
setting, the ORAM structure (e.g., the tree and the list)
would be secretly shared between the two servers. Later,
for simplicity in our explanation, we just use the original
structure, but please keep in mind that the data structure
is actually stored in a secret sharing manner, and all the
operations are performed in a secure computation way.

Use Tree-based ORAM-SC. In the original ORAM (no
matter tree-based ORAM or list-based ORAM), each block
is associated with a block ID , denoted as bid, and there is
a fixed set B containing n block IDs. Each access needs
to specify a block ID in the set B. In our anonymous
communication system, the sender needs to insert his mes-
sage into the ORAM structure, i.e., write a message into
a block. Since we aim to utilize the ORAM structure to
store up to n unretrieved messages, while allowing senders
to independently select their own block IDs from the set
B, it is highly likely that multiple senders will choose the
same block ID. Consequently, their messages will not be
correctly written into the ORAM. To solve this issue, we
allow the senders to choose block IDs from a larger set B̃.
Specifically, when we aim to store 220 unretrieved messages
in the ORAM, we can set the bit-length of each block ID
as ℓbid = 80 and the set B̃ contains 280 block IDs. Then,
according to the birthday paradox probability, the collision

probability is 1− e
− n2

2·2ℓbid < 2−40.
While we solved logical collisions above, we also need

to solve physical collisions. In other words, although the
probability that multiple senders choose the same block ID
is negligible, the number of blocks maintained by the tree-
based ORAM is much smaller than 2ℓbid , and thus there may
be physical collisions. Next, we first recall the data structure
in the tree-based ORAM, and then explain how to leverage
it to eliminate physical collisions.

We show the data structure of the tree-based ORAM
in Figure 4, assuming that there are 4 blocks indexed by
{bid1, bid2, bid3, bid4}. In the tree-based ORAM, each block
is also associated with a path identified by a leaf ID lid. For a
block, after being accessed, the block would be associated
with a new randomly chosen path and put into the root

node2. Later, the block would be evicted from the root
node to the leaf node through the new path. When using
the tree-based ORAM in our anonymous messaging system,
for each new message msg, we need to assign a block ID
bidm and a path lidm for it and then write bidm||lidm||msg
into the root node as a block. The block ID can be chosen
by the sender using the above way. As for the path lidm,
according to the security analysis for the original tree-based
ORAM, we only need to ensure that the paths are selected
uniformly at random, without needing to ensure that each
block corresponds to a different path (e.g., in Figure 4, the
blocks indexed by bid3 and bid4 share the same path indexed
by lid3 = lid4 = 3). Therefore, we do not need to consider
the collision problem for the selection of paths. However,
to guarantee that paths are selected uniformly at random,
we cannot allow senders to choose paths, as senders may
behave maliciously. Instead, we require the two servers to
securely choose a random path, with neither server knowing
the path. Based on the analysis above, when using tree-based
ORAM, there is no need to consider any additional collision
issues beyond block IDs, and thus will not incur additional
costs compared to the original tree-based ORAM.
Simplify Tree-based ORAM-SC. At this point, we have
chosen the tree-based ORAM-SC to support for malicious
multiple clients, corresponding to D1 and D2. Furthermore,
due to D3, D4 and our basic scheme for providing indexes,
we can further simplify the tree-based ORAM-SC, and ob-
tain our variant ORAM−.

First, we do not need to hide the type of access (ac-
cording to D3), and thus we allow different treatments for
“read” and “write” operations. In the original ORAM-SC,
regardless of whether the access is “write” or “read”, the
servers need to perform the following three steps:

• Step-1: Retrieve the queried block and empty the cor-
responding position;

• Step-2: Add the queried block into the root node (if the
access is “write”, write the new payload to the block);

• Step-3: Perform an eviction process.
Second, in our anonymous messaging system, we as-

sume that a message is sent from a sender to a receiver,
and thus the access pattern for a block is just a sequence
{write, read} (according to D4). Therefore, the sending op-
eration in our anonymous messaging system only involves
inserting the new message into the ORAM structure, without
needing to re-write an existing block. Therefore, we only
need to perform Steps 2 and 3 for the writing. In addition,
after a message is retrieved (i.e., “read”), we only need to set
the corresponding block as a dummy block. In other words,
we only need to perform the above Step-1 for reading.

Furthermore, in the original ORAM-SC, the position
map needs to be maintained by a recursive process such that
the client-side storage cost is just O(1). In our anonymous
messaging system, the lists containing block IDs and path
IDs are actually the position map, and the clients do not need
to maintain them. Therefore, we do not need a recursive
process to query the position map.

2. Here, we ignore the stash for simplicity.
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3. Preliminary

3.1. Oblivious RAM

Encryption techniques can protect the content of data
outsourced to an untrusted server, but cannot hide the ac-
cess pattern, which also leaks sensitive information about
the client. Oblivious RAM (ORAM) was introduced by
Goldreich and Ostrovsky [47] to hide the client’s access
pattern from the untrusted server. Informally, given two
equal-length sequences of operations (including read and
write) on ORAM, the server cannot distinguish the two
sequences according to the physical access sequences. Next,
we give the definition provided by [56].

Definition 1 (ORAM). An ORAM = (Init,Query) includes
the following two polynomial-time algorithms:

• O ← Init(A,N): Initialize an ORAM object O con-
taining an array A of length N whose elements are
from some space M.

• m′ ← Query(O, i,m): If m =⊥, this is a read query
and returns the value m′ indexed by i ∈ [N ]; if m ̸=⊥,
this is a write query and sets the value indexed by i to
m and returns m′ =⊥.

Definition 2 (Secure ORAM ). An ORAM is secure if it
satisfies the following correctness and obliviousness.
Correctness. When a read is performed on index i, the result
equals the value that was last written to index i, or if a write
has never been performed on index i, it returns the initial
value of index i, A[i].
Obliviousness. For any initial arrays A and A′ of length N
and any sequence of queries {(i1,m1), · · · , (it,mt)} and
{(i′1,m′

1), · · · , (i′t,m′
t)} where ij , i

′
j ∈ [N ] and mj ,m

′
j ∈

M∪ {⊥}, the following equation is satisfied.

Acc

 O ← Init(A,N),
Query(O, i1,m1),

· · ·
Query(O, it,mt)

 ≈ Acc

 O′ ← Init(A′, N),
Query(O′, i′1,m

′
1),

· · ·
Query(O′, i′t,m

′
t)


where Acc() is the sequence of physical memory ac-

cesses when executing the input algorithms, and ≈ refers to
computational, statistical, or perfectly indistinguishability.

Tree-based ORAM. Our work mainly relies on tree-based
ORAM ( [48], [49], [50], [57]). Therefore, we briefly recall
tree-based ORAM here.

In tree-based ORAM, N blocks are organized into a
binary tree of height L = logN , and each node is a
bucket containing Z blocks. Each block is of the form
{bid||lid||data} where bid is a block identifier and lid is a
leaf identifier specifying the path on which the block resides,
and data is the payload of the block.

Each block is associated with a path identified by the
leaf id lid and will be evicted through the path. The mapping
relation between blocks and paths is stored in the position
map, which is held by the client. According to [50], tree-
based ORAMs can be summarized into Algorithm 1, and

Evict() is the key difference between tree-based ORAM
schemes. Specifically, for access to a block indexed by
bid, the client first retrieves the corresponding lid from the
position map (line 2). Then, the client fetches all blocks on
the path from the server, and reads and removes the block
from the path (line 3). Then, the client reassigns a new path
for this block and updates the position map (line 4). If this
is a “read” operation, the client obtains the data stored in
the block, otherwise, the client updates the data field in this
block. Finally, the client adds the accessed block into the
stash and executes the eviction process (lines 8-9), writing
the fetched blocks back into the tree.

Algorithm 1 Tree-based ORAM: Access(op) // where
op=(“read”, bid) or op=(“write”, bid, data∗)

1: procedure ACCESS(op)
2: lid = PositionMap[bid] ▷ Obtain the leaf id
3: {bid||lid||data} = ReadAndRm(bid, lid) ▷ Read

and remove the block
4: PositionMap[bid] = UniformRandom(0, · · · , N−1)

▷ Assign a new path for the block
5: if op is “read” then
6: data∗ = data
7: end if
8: stash.add({bid||PositionMap[bid]||data∗}) ▷ Add

the accessed block to the stash
9: Evict()

10: Return data
11: end procedure

ORAM in Secure Computation. The storage of the server
and the client is secret-shared between the parties and
all the operations are accomplished over secure computa-
tion. Specifically, for tree-based ORAM in two-party secure
computation, the tree and position map are secret-shared
between the two parties (i.e., two servers in our work). For
an access, each party obtains shares [bid] and [data∗], and
the operations shown in Algorithm 1 are implemented using
secure computation protocols.

3.2. Oblivious Shuffling

The two parties input two vectors x⃗ = (x1, · · · , xn)
and y⃗ = (y1, · · · , yn), respectively. Oblivious shuffling
permutes the vector (x1+y1, · · · , xn+yn) to z⃗ = (xπ(1)+
yπ(1), · · · , xπ(n)+yπ(n)) with a permutation π not known
by P0 and P1. Then, each element zi in z⃗ is reshared to
zi,0 and zi,1, such that zi,0 + zi,1 = zi. Finally, P0 and
P1 obtain z⃗0 = (z1,0, · · · , zn,0) and z⃗1 = (z1,1, · · · , zn,1),
respectively. We use the state-of-the-art design by Peceny et
al. [40] to instantiate oblivious shuffling.

3.3. Private Equality Test

Through the Private Equality Test (PET), two parties
with items x and y can obtain bits b0 and b1, respectively,
such that if x = y, b0 ⊕ b1 = 1, otherwise, b0 ⊕ b1 = 0.
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Parameters:
• Two parties: P0 and P1;

Functionality:
1. Wait for input x⃗ = (x1, · · · , xn) from P0;
2. Wait for input y⃗ = (y1, · · · , yn) from P1

3. Choose a random permutation π, compute
z⃗ = (xπ(1) + yπ(1), · · · , xπ(n) + yπ(n)), and reshare z⃗
as z⃗0 and z⃗1, such that z⃗ = z⃗0 + z⃗1;

4. Send z⃗0 and z⃗1 to P0 and P1, respectively.

Functionality FShuffle

Figure 5: Oblivious Shuffling Ideal Functionality

Parameters:
• Two parties: P0 and P1;

Functionality:
1. Wait for input x ∈ {0, 1}ℓ1 from P0;
2. Wait for input y ∈ {0, 1}ℓ1 from P1;
3. Give output b0 and b1 to P0 and P1, respectively,

where b0 and b1 are boolean shares of b, where b = 1
if x = y and b = 0 if x ̸= y.

Functionality FPET

Figure 6: Private Equality Testing Ideal Functionality

We show the formal definition in Figure 6. The performance
of PET directly affects the latency of our protocol, so we
implemented it using the scheme in [58], which enjoys
efficient online performance.

4. Protocol Design

In this section, we will give a detailed description of our
protocol. Next, we first provide the basic protocol and then
leverage a variant of ORAM to support long messages.

4.1. Basic Protocol

In the initialization phase (see Figure 7), Server1 (resp.
Server2) initializes two empty vectors M⃗1 (resp. M⃗2) and
X⃗1 (resp. X⃗2). Later, M⃗j (j ∈ {1, 2}) will be used to store
the messages and X⃗j (j ∈ {1, 2}) will be used to store
the information about addresses. Each recipient Rcvi uses
AddrRcvi = gkRcvi as her address to receive messages, and
kRcvi is the corresponding secret key. We assume that the
potential sender can obtain the address AddrRcvi in some
way, such as through a public website or secure peer-to-
peer communications.

In the sending phase (see Figure 8), we assume that a
sender wants to send a message m to a recipient associated
with an address AddrRcvi . The sender first generates a
one-time address A = AddrrRcvi and an associated string
R = gr. Then, the sender splits the one-time address A
into two shares A1 and A2, such that A = A1 · A2, and
shares the message m into two shares [m]1 and [m]2, such
that m = [m]1 + [m]2. After preparing these, the sender
sends ((Aj , R), [m]j) to Serverj , where j ∈ {1, 2}. Once

There are two servers, Server1 and Server2, and multiple
clients acting as senders or recipients.
Initialization:
Each Serverj (j ∈ {1, 2}) does the following:
(1) Initialize two empty vectors M⃗j = ∅ and X⃗j = ∅ (for

retrieval);
Each client acting as a recipient Rcvi does the following:
(2) Randomly choose kRcvi ← Zp, and generate an address

AddrRcvi = gkRcvi ∈ G; (G is a cyclic group with prime
order p and generator g.)

(3) For each potential sender Sdrj , send AddrRcvi to Sdrj .

Basic Protocol ΠInitialize

Figure 7: Basic protocol for initialization.

Sender: sending information to the two servers:
To send a message m to a recipient Rcvi associated with
address AddrRcvi , the sender does the following:
(1) Randomly choose r

$←− Zp, and generate A = AddrrRcvi
and R = gr;

(2) Randomly split A into A1 and A2, such that
A = A1 ·A2;

(3) Generate the shares ([m]1, [m]2);
(4) Send ((A1, R), [m]1) to Server1 and ((A2, R), [m]2) to

Server2.
Servers: preparing for retrievals:
(5) The two servers check if ((Aj , R), [m]j) is well-formed

for j ∈ {1, 2}, if so, continue, otherwise ignore it.
(6) Serverj appends [m]j to M⃗j and (Aj , R) to X⃗j .

Basic Protocol ΠSend

Figure 8: Basic protocol for sending.

receiving the sending request, Serverj appends [m]j to M⃗j

and (Aj , R) to X⃗j .
In the retrieval phase (see Figure 9), the recipient

first randomly splits the secret key kRcvi into two shares
kRcvi,1 and kRcvi,2, and then sends the two shares to the
two senders, respectively. Obviously, if a one-time address
(Ak, Rk) corresponds to the secret key kRcvi , then Ak =

R
kRcvi

k = Ak,1 ·Ak,2 where Ak,1 and Ak,2 are the shares of
Ak. Therefore, we have Ak,1 · Ak,2 = R

kRcvi,1

k · RkRcvi,2

k ,
i.e., Ak,1/R

kRcvi,1

k = R
kRcvi,2

k /Ak,2. Assuming that there
are n unretrieved messages, for each k ∈ [n], the two
servers compute ak,1 = H1(Ak,1/R

kRcvi,1

k ) and ak,2 =

H1(R
kRcvi,2

k /Ak,2), respectively. For each pair (ak,1, ak,2),
the two servers invoke FPET and obtain the shares of
equality test result bk,1 and bk,2 respectively. Then, Serverj
concatenates bk,j with the corresponding message share
M⃗j [k] to obtain lk,j = bk,j ||M⃗j [k]. We denote the vector
(l1,j , l2,j , · · · , ln,j) as l⃗j . Then, the two servers invoke
FShuffle with inputs l⃗1 and l⃗2 and obtain outputs g⃗1 and
g⃗2, respectively. According to the definition of FShuffle,
g⃗1[k]+ g⃗2[k] = l⃗1[π(k)]+ l⃗2[π(k)] for any k ∈ [n] where the
permutation π is not known to the two servers. We denote
each g⃗j [k] as b′k,j ||[m]′k,j . After collaboratively opening
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A recipient holding (AddrRcvi , kRcvi) wants to retrieve the
messages pertinent to her.
Recipient:

1) Randomly split kRcvi into kRcvi,1 and kRcvi,2 such that
kRcvi = kRcvi,1 + kRcvi,2;

2) Send kRcvi,1 to Server1 and kRcvi,2 to Server2;
3) For each k ∈ [n], once receiving [m]′k,1 and [m]′k,2

from the two servers, recover m = [m]′k,1 + [m]′k,2.
Servers:

1) The two servers do the following for each k ∈ [n]
(j ∈ {1, 2}) where |X⃗1| = |X⃗2| = |M⃗1| = |M⃗2| = n:
a) Serverj retrieves X⃗j [k] = (Ak,j , Rk);
b) Server1 computes ak,1 = H1(Ak,1/R

kRcvi,1

k ) and
Server2 computes ak,2 = H1(R

kRcvi,2

k /Ak,2), where
H1 is a hash function: G→ {0, 1}ℓ3 ;

c) Server1 and Server2 invoke FPET with inputs ak,1

and ak,2, and obtain bk,1 and bk,2 respectively;
d) Serverj generates lk,j = bk,j ||M⃗j [k] (we denote

l⃗j = (l1,j , l2,j , · · · , ln,j));
2) Server1 and Server2 invoke FShuffle with inputs l⃗1 and

l⃗2, respectively, and obtain outputs g⃗1 and g⃗2, where
g⃗1[k] + g⃗2[k] = l⃗1[π(k)] + l⃗2[π(k)] for any k ∈ [n];

3) For each k ∈ [n]:
a) Serverj retrieves g⃗j [k] = b′k,j ||[m]′k,j ;
b) Server1 and Server2 collaboratively open

b′k = b′k,1 + b′k,2;
c) If b′k = 1, Serverj sends [m]′k,j to the recipient.

Basic Protocol ΠRetrieve

Figure 9: Basic protocol for retrieval.

b′k = b′k,1 + b′k,2, Serverj sends [m]′k,j to the recipient if
b′k = 1.

4.2. Scaling With ORAM

Our basic protocol is not friendly for long messages, as it
needs to shuffle all the messages. If the length of each mes-
sage is too large, the performance would not be practical. To
solve this problem, we maintain the messages using a variant
of ORAM called ORAM−, instead of putting the messages
into the above list. Specifically, the basic scheme described
in Section 4.1 is used to provide short indexes, and these
indexes can be used to retrieve the corresponding messages
from ORAM−. Additionally, ORAM− is maintained by the
two servers in a secure computation way.

Next, we first give the construction of ORAM− and then
give our scaling protocol by using ORAM−. See Section 5.1
for the definition and security analysis of ORAM−.
Construction of ORAM−. Compared to classical ORAMs,
our ORAM− enjoys the following features:

• (1) The block bid is randomly chosen;
• (2) An active block can only be written once and read

once;
• (3) Each block is not initialized with an bid. When

writing, an empty block would be assigned with a
specific bid and the data would be written into the
block; after reading, the corresponding block would

be reset as an inactive block. When using tree-based
ORAM, we do not need to evict after reading;

• (4) It is not necessary to hide the operation type.
Next, we construct ORAM− in Algorithm 2 based on

tree-based ORAM (see Algorithm 1). Specifically, different
from tree-based ORAM, ORAM− does not have a position
map, and the inputs of Read and Write directly include the
leaf id lid. For a Read operation, ORAM− only needs to
return and remove the data stored in the block indexed by
bid from the path indexed by lid. For a Write operation,
ORAM− adds the block containing bid||lid||data∗ to stash
and execute the eviction process.

Algorithm 2 ORAM−

1: procedure READ(bid, lid)
2: {bid||lid||data} = ReadAndRm(bid, lid) ▷ Read

and remove the block
3: Return data
4: end procedure
5: procedure WRITE(bid, lid, data∗)
6: stash.add({bid||lid||data∗}) ▷ Add the accessed

block to the stash
7: Evict()
8: end procedure

Scaling Protocol. Next, we incorporate the above ORAM−

in secure computation setting into the basic protocol to
construct a scalable protocol. The initialization phase is the
same as that in the basic protocol (i.e., Figure 7). Therefore,
we only give the details about the sending and retrieval
phases next, and the differences from the basic protocol are
marked with underlines.

In the sending phase (see Figure 10), compared to the
basic protocol, we need to generate a block id bid and
leaf id lid for each message. Later, the message m will be
written into and retrieved from the block indexed by bid. To
guarantee the correctness of ORAM−, the block id should be
unique and the leaf id should be randomly chosen. Since the
sender may be malicious, we cannot assume that the sender
generates bid and lid correctly. Moreover, when retrieving,
the two servers can know which path identified by a leaf
id is retrieved. If the leaf id is chosen by the sender, the
sender can learn some information about the recipient by
colluding with one of the servers. Therefore, we require the
two servers to randomly generate the shares of block id
and leaf id, such that none of the servers and sender knows
(bid, lid) and (bid, lid) are random.

After generating ([bid]j , [lid]j), Serverj appends
[bid]j ||[lid]j , rather than [m]j , to M⃗j . Finally, the two
servers collaboratively execute ORAM−.WRITE with the
shares ([bid]1, [lid]1, [m]1) and ([bid]2, [lid]2, [m]2) as input.

In the retrieval phase (see Figure 11), different from
the basic scheme where the two servers directly retrieve
the message shares from M⃗1 and M⃗2, the two servers here
first obtain the shares of pertinent block id and leaf id and
then collaboratively execute ORAM−.READ to obtain the
message shares [m]k,1 and [m]k,2.
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Sender: sending information to the two servers:
The same as in the basic protocol (see Figure 8).

Servers: preparing for retrievals:
The two servers check if ((Aj , R), [m]j) it is well-formed
for j ∈ {1, 2}, if so, continue, otherwise ignore it.

1) Serverj randomly chooses a block id share
[bid]j

$←− {0, 1}ℓ1 and a leaf id share [lid]j
$←− {0, 1}ℓ2 ;

2) Serverj append [bid]j ||[lid]j to M⃗j and (Aj , R) to X⃗j ;
3) The two servers execute ORAM−.WRITE with input

([bid]1, [lid]1, [m]1) and ([bid]2, [lid]2, [m]2).

Protocol ΠSend

Figure 10: Scalable protocol for sending.

A recipient holding (AddrRcvi , kRcvi) wants to retrieve the
messages pertinent to her.
Recipient:

The same as in the basic protocol (see Figure 9).
Servers:

1) The same as in the basic protocol (see Figure 9);
2) The same as in the basic protocol (see Figure 9);
3) For each k ∈ [n]:

a) Serverj retrieves g⃗j [k] = b′k,j ||[bid]′k,j ||[lid]′k,j ;
b) Server1 and Server2 collaboratively open

b′k = b′k,1 ⊕ b′k,2;
c) If b′k = 1, Server1 and Server2 invoke

ORAM−.READ with inputs [bid]′k,1||[lid]′k,1 and
[bid]′k,2||[lid]′k,2, respectively, and obtain outputs
[m]k,1 and [m]k,2, respectively;

d) Serverj sends [m]k,j to the recipient.

Protocol ΠRetrieve

Figure 11: Scalable protocol for retrieval.

4.3. Protecting Volume Information by Adding
Dummy Messages

Our protocol explained in Sections 4.1 and 4.2 leaks
volume information to the adversary: how many messages
are sent by a sender, and how many messages are retrieved
by a recipient. Different strategies exist in the literature to
protect against such volume information leakage. Protocols
that inherently employ rounds can use batching [3], [8],
[13], [27] techniques, where every user sends exactly the
same number of messages in a batch, and each recipient
retrieves the exact same number of messages after the batch
is processed.

On the other hand, protocols that do not employ such
batching methods utilize heuristic techniques based on
dummy messages [7], [16]. Our cryptographic construction
also departs from the restrictions of rounds and batches and
aims to achieve what a trusted third-party anonymizer could
guarantee. Therefore we recommend techniques based on
dummy messages in order to hide such volume information.
The clients can add dummy messages to hide their overall
rate of sending and receiving messages, and the amount
of dummy messages can be chosen based on the desired
amount of privacy. A thorough analysis of such a strategy

is out of the scope of this work, and we refer to existing
works [7], [16] from literature for the quantification of
dummy message rate vs. desired privacy.

5. Security Analysis

5.1. Security of ORAM−

ORAM− is a variant of ORAM, where a block is ac-
tivated by a “write” operation and will be released after a
“read” operation, and the type of operation does not need
to be hidden. We provide the definition of our variant of
ORAM ORAM− adopted from the definition in [56]. Note
that we do not consider ORAM− in the secure computation
setting here. As in previous works, the security of ORAM−

in the secure computation setting relies on the security of
ORAM− and the underlying secure computation techniques.

Definition 3 (ORAM for Transmission). A ORAM− =
(Init,Write,Read) includes the following three polynomial-
time algorithms:

• (St, Idx) ← Init(N, p): According to the predefined
maximum number of stored messages N and the pre-
defined collision probability p, generate an initialized
state St and an index space Idx. The collision prob-
ability refers to the probability that multiple stored
messages correspond to one index.

• St′ ← Write(St, i,m): Write a message m that asso-
ciates with an index i ∈ Idx into the current state St,
and the state St is updated to St′.

• (St′,m)← Read(St, i): If the index i has been written
before, read the message m that associates with the
index i ∈ Idx from the current state St, otherwise, read
m =⊥. Additionally, update the state St to St′.

Definition 4 (Secure ORAM for Transmission). A ORAM−

is secure if it satisfies the following correctness and oblivi-
ousness.

Correctness. For an operation (St′,mr) ← Read(St, i),
if the last operation about the index i is St′ ←
Write(St, i,mw), then mr = mw, otherwise (there are no
previous operations on the index i, or the last operation
about the index i is also a “read” operation), mr =⊥.

Obliviousness. For any two sequences of operations
{Op1(St1, i1,m1),Op2(St2, i2,m2), · · · ,Opt(Stt, it,mt)}
and {Op′1(St

′
1, i

′
1,m

′
1),Op

′
2(St

′
2, i

′
2,m

′
2), · · · ,Op

′
t(St

′
t, i

′
t,m

′
t)}

chosen by the adversary, that satisfy the following
conditions:

• Op and Op′ are in {Write,Read};
• If the operation is Read, the corresponding mk or m′

k
is ⊥;

• Opk = Op′k.

We have
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Acc


(St1, Idx)← Init(N, p),

(St2,m1/ ⊥)← Op(St1, i1,m1),

· · ·
(Stt,mt/ ⊥)← Op(Stt, it,mt)



≈ Acc


(St′1, Idx

′)← Init(N, p),

(St′2,m
′
1/ ⊥)← Op(St′1, i

′
1,m

′
1),

· · ·
(St′t+1,m

′
t/ ⊥)← Op(St′t, i

′
t,m

′
t)


Where Acc() is the sequence of physical memory ac-

cesses when executing the input algorithms, and ≈ refers to
computational, statistical, or perfectly indistinguishability.

Theorem 1. If the underlying tree-based ORAM is a secure
ORAM, then our construction shown in Algorithm 2 is a
secure ORAM−.

Proof. Next, we will analyze the correctness and oblivious-
ness of our construction, respectively.
Correctness. The correctness is obviously guaranteed by
the correctness of the underlying tree-based ORAM. For
a “read” operation, it just releases an active block, and
thus will not incur extra overflow. A “write” operation in
ORAM− is equivalent to writing a message to an empty
block in tree-based ORAM. Therefore, as long as the num-
ber of stored messages is less than the upper bound N , a
“write” operation will also not incur extra overflow.

As for the collisions of indexes, we can use the birthday
paradox probability to set the bit-length of each block ID
as ℓbid, given the predefined maximum number of stored
messages N .
Obliviousness. If there is an adversary A that can distin-
guish two sequences of physical memory accesses generated
by two sequences of operations run by ORAM−. Then,
we can construct another adversary B that can distinguish
two sequences of physical memory accesses generated by
two sequences of operations run by ORAM. Due to space
limitation, we defer the construction of the adversary B to
Appendix B.

5.2. Security Against Passive Adversaries

5.2.1. Anonymity Definition. We focus on both sender
anonymity and recipient anonymity for our protocol. With
that goal, we define an ideal functionality Fanon that can
capture both properties. Our Fanon functionality, however,
does not hide the volume information corresponding to the
sender: if a specific sender sends too many (or too few)
messages, that volume information is leaked to the adver-
sary. Even a trusted third-party anonymizer that shuffles
all the messages after receiving every new message would
leak such volume information, unless dummy messages are
added by the senders. We discuss how to hide such volume
information based on dummy messages in Section 4.3. We
present the ideal functionality Fanon in Fig. 12.

1: The functionality maintains a set T which contains the
messages and the corresponding sender and recipient.
Each element in the set is stored as a tuple
(msg, sender, recipient).

2: The functionality also maintains a set R that keeps track
of the messages that are retrieved.

3: Sending a message (Send):
• Upon receiving (Send,AddrRcvj ,msg) from an honest

sender ui:
– store the tuple (ui,AddrRcvj ,msg) in T ;
– send (Send, ui, , ) to the simulator S.

• Upon receiving (Send, ui,AddrRcvj ,msg) from S:
– if sender ui is a corrupted party, store the tuple

(ui,AddrRcvj ,msg) in T ;
– if ui is an honest party, return Invalid
command to S.

4: Retrieving messages (Retrieve):
• Upon receiving (Retrieve,Rcvj) from the simulator S

for a corrupted recipient Rcvj :
– select all tuples

t = (msg, sender, recipient) ∈ T where
t.recipient = AddrRcvj .

– Collect the msg field of those tuples in a list;
shuffle the list, and send the shuffled list to S.

– Remove those tuples from T .
• Upon receiving (Retrieve, ) from an honest Rcvj :

– select all tuples
t = (msg, sender, recipient) ∈ T where
t.recipient = AddrRcvj .

– If there are k such tuples, send the msg field of
those tuples to Rcvj as a list; remove those k
entries from T .

– Send (Retrieve,Rcvj , k) to the simulator S.
– Remove those k entries from T .

Functionality Fanon

Figure 12: An ideal functionality capturing both sender and
recipient anonymity.

Theorem 2. Assuming the hardness of the Discrete-
logarithm problem, computational security and correctness
of ORAM−, and at least one of the servers is
honest, our protocol Π = (ΠInitialize,ΠSend,ΠRetrieve)
UC-realizes the ideal functionality Fanon in the
{FPET,FShuffle,FSC−ORAM−}-hybrid world.

FSC−ORAM− denotes the ideal functionality that captures
running our ORAM− in the secure computation setting
as explained in Section 2.4. We present the definition of
FSC−ORAM− in Figure 14 in Appendix C. It takes input
from both servers, runs ORAM− locally without leaking the
inputs, and returns the output.

To prove that our protocol UC-realizes the Fanon func-
tionality, we show that there exists a simulator Sfull inter-
acting with Fanon functionality that generates a transcript
that is indistinguishable from the transcript generated by the
real-world adversary A in the protocol Π. We present the
description of the simulator (Figs. 15 and 16) and the full
proof in Appendix C.
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5.3. Defending Against Malicious Behaviors

The security arguments presented in Section 5.2 assume
that the adversary is honest-but-curious — the compromised
clients and server still follow protocol faithfully. However,
malicious clients (or the malicious server) could choose to
disrupt the protocol. Below we discuss the relevant disrup-
tive behaviors and the defenses against them.

5.3.1. Malicious Senders. If a malicious client (sender)
sends invalid Aj shares such that the intended recipient
is invalid, it will only accumulate invalid messages in the
servers’ storage. Such invalid messages will not impact the
functionality or security of the system, except for slow-
ing it down over time. To avoid such slowdown, the two
servers can periodically run any private-membership-tests
techniques (e.g., vector commitments [59]). However, a
malicious sender can still overwhelm a specific recipient by
sending a lot of messages; such attacks could be prevented
by rate-limiting by the servers.

Targeted attacks where a (malicious) sender tries to
disrupt/modify the messages sent by others are automatically
eliminated in our design: the addresses for the blocks in
ORAM− are chosen from a large address space so that the
collision probability is negligible (the bid and lid values are
randomly chosen by the servers).

5.3.2. Malicious Server Colluding With Receivers. In
our scheme, we require the sender to generate a one-time
address AddrrRcv for each sending, which is used to de-
fend this malicious behavior. Without the one-time address,
for an address Addr, the two servers would hold A1 and
A2, respectively, such that A1 · A2 = Addr. We assume
that a malicious receiver colludes with Server2. Then, the
malicious receiver not knowing the secret key of Addr
randomly generates a secret key share k, and sends k to
Server1. Server1 will compute a1 = H1(A1/g

k). Since
the receiver colludes with Server2, Server2 can compute
a2 = H2(Addr/(A2 · gk)). We can see that a1 must be
equal to a2, allowing the receiver to get the corresponding
message (even though the malicious receiver cannot obtain
the plain texts of these messages, the receiver can learn
how many messages are sent to the address). By using the
one-time address, the malicious receiver cannot know the
actual address used for sending messages, and thus cannot
retrieve the corresponding messages. Note that the colluding
server can still just change the bits output by PETs to allow
the receiver to get more messages. However, they cannot
get more information from the behavior; the messages can
be ciphertexts and they still cannot know the sender or the
receiver of the messages.

HomeRun also discussed using one-time addresses to
address this issue. However, their solution is not suitable
for our work, since Server1 in HomeRun can learn the one-
time address belonging to a receiver. Then, the sender can
collude with the server to know the receiver, as the one-
time address is generated by the sender. In our scheme, the
servers cannot know the one-time address.

5.3.3. Tampering with the stored data. Same as prior
works [3], [14], to prevent the servers from tampering with
the messages, we require the sender to include a MAC
for each message. However, the malicious server might
selectively modify messages and verify on the recipient
side which messages fail MAC-verification (especially when
colluding with the receiver). To address that issue, we utilize
the Blind MAC verification technique using Beaver triples,
introduced in Clarion [14]. The beaver triples are generated
as part of a preprocessing phase, and our servers executes
the Blind MAC verification before every retrieval operation.
For a detailed description of the verification technique we
refer to [14, Section V.B].

6. Performance Evaluation

Implementation. We implement Kerblam in C++, and we
will make the code public upon acceptance of the paper. The
cyclic group G is realized using the elliptic curve secp256r1
provided in OpenSSL [60]. The oblivious message retrieval
part is implemented using the code of HomeRun [10]. The
Oblivious Shuffling is implemented using the code of [40]3.
We implement ORAM− based on circuit ORAM [50] whose
code is provided in [61].

6.1. Experimental Evaluation

We aim to answer the following questions from our
experimental evaluations:

• While trying to achieve stronger anonymity guarantees
(End-to-end unlinkability), do we introduce impractical
overheads for the system?

• How much performance improvement do we gain from
the scaling technique based on ORAM−?

Experimental Environment. Our experiments are con-
ducted on machines equipped Intel(R) Core(TM)
i9-14900K with 24 cores and 128GB of RAM, running
Ubuntu. We evaluate Kerblam in LAN network with 10Gbps
bandwidth and 0.08 ms RTT.

6.1.1. Benchmarks. First, we present the benchmarks for
the operations (equality test, shuffling, and ORAM− read
and write) run on a single thread on the servers. We show
the benchmarks in Table 1.

The basic protocol (without ORAM− optimization) only
includes “Preparation”, “Equality Test”, “Shuffling”. We can
see that for short messages (16B), the overhead for the
“Shuffling” part is reasonable (less than 1.3 seconds even
for 220 messages), and the equality test is the dominant part
in the performance (around 8.6 seconds for 220 messages).
However, for long messages of 1KB, the overhead for shuffle
drastically increases with the number of messages, and be-
comes the dominant part among all steps. For 220 messages
this step takes more than 244 seconds, which makes the base
protocol less practical for long messages.

3. We received the source code by contacting the authors over emails.
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Prep. Equality Test Shuffling ORAM− (1 KB)
Offline Online 16 B 1 KB Write Read

214 0.448 0.413 0.138 0.031 1.226 0.276 0.058
216 1.789 1.674 0.522 0.071 5.445 0.3 0.063
218 7.098 7.218 2.144 0.309 28.457 0.331 0.068
220 28.628 28.665 8.608 1.264 244.7 0.369 0.073

TABLE 1: The breakdown runtime (seconds) of Kerblam in
a single thread, when the number of messages stored by the
two servers n ∈ {214, 216, 218, 220}. For basic protocol (see
Figure 9), step 1-a and step 1-b correspond to “Preparation”;
step 1-c and step 1-d correspond to “Equality Test”; steps
2-3 correspond to “Shuffling”. For salable sending protocol
(see Figure 10), step 3 corresponds to “ORAM− Write”.
For the salable sending protocol (see Figure 11), step 2
corresponds to “Shuffling 16 B” and step 3 corresponds to
“ORAM− Read”. Note that the performance of the “Equality
Test” phase is almost the performance of HomeRun.

As we can see, the time taken for ORAM− operations
grows very slowly with the number of messages. So, for
short (16B) and small number (214) of messages, ORAM−

does not add much improvements. However, for long mes-
sages of 1KB, ORAM− adds significant benefits in terms of
performance. In our scalable protocol with ORAM−, shuf-
fling is performed on short indexes, and the actual messages
are stored by ORAM−. So we only need to use “Shuffling
(16 B)”. In this case, we can see that the “Preparation” phase
and “Equality Test” phase dominate the performance.

Fortunately, the two phases are highly parallelizable.
We show the performance of these two phases after par-
allelization in Table 2. We can see that when the number
of threads T is 4, the performance improvement is nearly
4× for “preparation” and “equality test online, and there
is a significant performance improvement for “equality test
offline”. When T = 16, the performance improvement is not
exactly proportional to T , however, there is still a significant
improvement.

Prep. Equality Test

T=4 T=16 T=4 T=16
Offline Online Offline Online

214 0.132 0.066 0.161 0.061 0.117 0.035
216 0.477 0.189 0.718 0.175 0.525 0.094
218 1.885 0.724 2.985 0.626 2.178 0.241
220 7.456 2.836 11.878 2.468 8.396 1.035

TABLE 2: Parallelization of “Preparation” and “Equality
Test” using T = {4, 16} threads.

6.1.2. End-to-end Performance. Now we measure the end-
to-end performance of our basic protocol as well as when
we optimize with ORAM−. We present the latency (i.e., the
sum of sending runtime and retrieval runtime) of our basic
and scalable scheme in Table 3.

We can confirm that when the message size is 16 B,
the performance of our basic scheme is adequate, espe-
cially with a relatively small number of messages (214);
for n = 220, the latency is 38.5 seconds. However, when
the message size increases to 1 KB, the latency is 281.936

Our basic scheme (T=1) Our scalable scheme (1KB)
16 B 1 KB T=1 T=4 T=16

214 0.617 1.812 0.951 0.558 0.466
216 2.382 7.756 2.745 1.086 0.717
218 9.551 37.699 9.95 3.219 1.673
220 38.5 281.936 38.942 11.63 5.577

TABLE 3: The latency (seconds) of our basic scheme and
scalable scheme. The number of messages stored by the
two servers n ∈ {214, 216, 218, 220}. The basic scheme is
evaluated for message sizes of 16 B and 1 KB, in a single
thread. The scalable scheme is evaluated for the message
size of 1 KB, using T = 1, 4, 16 threads.

seconds, which is not suitable enough for practical use. After
introducing ORAM−, the latency can be reduced to 38.942
second for 220 messages of size 1 KB, using a single thread.
Further, with 16 threads, the latency goes down to only
5.577 seconds.
Comparisons. We do not make direct comparisons with
other protocols since our anonymity guarantee is not com-
parable with existing protocols. Additionally, a significant
component of our performance optimization stems from
ORAM−, which could arguably be utilized by other ex-
isting systems as well. However, we still want to claim
that our performance is comparable to existing protocols,
despite achieving stronger anonymity. Our performance is
comparable to that of Express [3] that needs 15 seconds
latency with 220 messages and 16 threads. The performance
of HomeRun [10] is almost the same as the “Equality
Test” part shown in Table 1. It can be seen that the main
additional overhead in our scheme compared to HomeRun
is introduced by the “Preparation” part, which is used to
defend the collusion between receivers and one server (as
explained in Section 5.3.2). Whereas, HomeRun did not
consider this attack in their evaluation.

7. Conclusion

In this work, we have designed an end-to-end anony-
mous messaging system, Kerblam, that can protect the pri-
vacy of both senders and receivers. In addition, we support
asynchronous retrieval, allowing receivers to go offline at
any time without losing messages. Our design is based on a
key observation that combining oblivious message retrieval
and oblivious shuffling can obtain end-to-end anonymity
without compromising on the communication functionali-
ties. However, the performance of direct combination is not
enough for large-scale long messages. To improve scala-
bility, we have proposed a novel variant of ORAM, called
ORAM−. By introducing ORAM−, our Kerblam can trans-
mit a 1 KB message in about 5.577 seconds when there are
a total of 220 unretrieved messages in the system.
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Flow matching for mixnet traffic,” Proceedings on Privacy Enhancing
Technologies, vol. 2024, pp. 276–294, 04 2024.

[20] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks and provable defenses for website fingerprinting,”
in USENIX Security 2014, K. Fu and J. Jung, Eds. USENIX
Association, Aug. 2014, pp. 143–157.

[21] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen,
M. Henze, and K. Wehrle, “Website fingerprinting at internet scale,”
in NDSS 2016. The Internet Society, Feb. 2016.

[22] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas, “Circuit
fingerprinting attacks: Passive deanonymization of tor hidden ser-
vices,” in USENIX Security 2015, J. Jung and T. Holz, Eds. USENIX
Association, Aug. 2015, pp. 287–302.

[23] Z. Luo, A. Bhat, K. Nayak, and A. Kate, “Attacking and improving
the tor directory protocol,” in 2024 IEEE Symposium on Security and
Privacy (SP), 2024.

[24] Harvx1010. (2024) 5 best anonymous social media platforms of
2024: Embracing privacy and expression in the digital age. [Online].
Available: https://at-harvx1010.medium.com/5-best-anonymous-
social-media-platforms-of-2024-embracing-privacy-and-expression-
in-the-digital-b63cc30acf4c

[25] S. Langowski, S. Servan-Schreiber, and S. Devadas, “Trellis: Ro-
bust and scalable metadata-private anonymous broadcast,” Cryptology
ePrint Archive, Paper 2022/1548, 2022.

[26] M. Ando, A. Lysyanskaya, and E. Upfal, “Practical and Provably Se-
cure Onion Routing,” in Proceedings of the 45th International Collo-
quium on Automata, Languages, and Programming (ICALP). Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, pp. 144:1–144:14.

[27] A. Kwon, D. Lu, and S. Devadas, “XRD: Scalable messaging system
with cryptographic privacy,” in 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20), 2020.

[28] D. Lazar, Y. Gilad, and N. Zeldovich, “Yodel: Strong metadata
security for voice calls,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, ser. SOSP ’19, 2019, p. 211–224.

[29] D. Das, C. Diaz, A. Kiayias, and T. Zacharias, “Are continuous stop-
and-go mixnets provably secure?” Proc. Priv. Enhancing Technol.,
vol. 2024, pp. 665–683, 2024.

[30] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 321–338.

[31] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. Miller,
“Honeybadgermpc and asynchromix: Practical asynchronous mpc and
its application to anonymous communication,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 887–903.

[32] V. Madathil, A. Scafuro, I. A. Seres, O. Shlomovits, and D. Varlakov,
“Private signaling,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022.

[33] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity
trilemma: Strong anonymity, low bandwidth overhead, low latency -
choose two,” in 2018 IEEE Symposium on Security and Privacy (SP).
San Francisco, California, USA: IEEE Computer Society, 2018, pp.
108–126.

[34] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Comprehensive
anonymity trilemma: User coordination is not enough,” Proceedings
on Privacy Enhancing Technologies, vol. 2020, no. 3, pp. 356–383,
2020.

[35] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P Mixing and
Unlinkable Bitcoin Transactions,” in NDSS17, 2017.

[36] L. Barman, I. Dacosta, M. Zamani, E. Zhai, A. Pyrgelis, B. Ford,
J. Feigenbaum, and J.-P. Hubaux, “Prifi: Low-latency anonymity for
organizational networks,” Proceedings on Privacy Enhancing Tech-
nologies, vol. 2020, pp. 24–47, 10 2020.

[37] A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs, “Private anony-
mous data access,” in Advances in Cryptology – EUROCRYPT 2019,
Y. Ishai and V. Rijmen, Eds. Springer International Publishing, 2019,
pp. 244–273.

[38] G. Beck, J. Len, I. Miers, and M. Green, “Fuzzy message detection,”
in ACM CCS 2021, G. Vigna and E. Shi, Eds. ACM Press, Nov.
2021, pp. 1507–1528.

14

https://nymtech.net/nym-whitepaper.pdf
https://nymtech.net/nym-whitepaper.pdf
https://at-harvx1010.medium.com/5-best-anonymous-social-media-platforms-of-2024-embracing-privacy-and-expression-in-the-digital-b63cc30acf4c
https://at-harvx1010.medium.com/5-best-anonymous-social-media-platforms-of-2024-embracing-privacy-and-expression-in-the-digital-b63cc30acf4c
https://at-harvx1010.medium.com/5-best-anonymous-social-media-platforms-of-2024-embracing-privacy-and-expression-in-the-digital-b63cc30acf4c


[39] Z. Liu and E. Tromer, “Oblivious message retrieval,” in
CRYPTO 2022, Part I, ser. LNCS, Y. Dodis and T. Shrimpton, Eds.,
vol. 13507. Springer, Heidelberg, Aug. 2022, pp. 753–783.

[40] S. Peceny, S. Raghuraman, P. Rindal, and H. Shah, “Efficient
permutation correlations and batched random access for two-party
computation,” Cryptology ePrint Archive, Paper 2024/547, 2024.
[Online]. Available: https://eprint.iacr.org/2024/547

[41] E. Stefanov and E. Shi, “ObliviStore: High performance oblivious
cloud storage,” in 2013 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2013, pp. 253–267.

[42] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access
of outsourced data via oblivious ram simulation,” in International
Colloquium on Automata, Languages, and Programming. Springer,
2011, pp. 576–587.

[43] E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in ACM CCS
2013, A.-R. Sadeghi, V. D. Gligor, and M. Yung, Eds. ACM Press,
Nov. 2013, pp. 247–258.

[44] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder, “Maliciously
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Appendix A.
Why Not Choose List-based ORAM

From the analysis in Section 2.4, we have known that
when using tree-based ORAM, there is no need to consider
any additional collision issues beyond block IDs. However,
this is not true for list-based ORAM.

(a) Original version (b) Expanded version

Figure 13: List-based ORAM

The data structure of the list-based ORAM is shown in
Figure 13a. Unlike the tree-based ORAM where a path can
contain multiple real blocks and numerous dummy blocks
facilitate the movement of real blocks along corresponding
paths, list-based ORAM allocates only one position for each
real block, as illustrated in Figure 13a. Therefore, even if the
senders can choose the block IDs from a large set to avoid
collisions, the number of physical positions is still just n,
which will lead to collisions with overwhelming probability.
To solve the problem, we need to expand the capacity of
each position to allow each position to contain multiple
blocks, as shown in Figure 13b. In this way, the positions in
the expanded list-based ORAM are equivalent to the paths
in the tree-based ORAM. Therefore, even if two senders
choose the same position, their messages can still be written
into ORAM successfully. To access a block in the expanded
list-based ORAM, in addition to the block ID bid, a position
ID pid also needs to be provided. Then, the servers first find
the position according to pid and then search for the block
according to bid in this position. A natural question arises:
how many blocks are needed in a position to guarantee that
the failure probability is negligible?
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Obviously, this is a balls-into-bins problem, and we can
use the following inequality [62]

Pr[∃ position with ≥ ρ items]

≤q

[
n∑

i=ρ

(
n

i

)
·
(
1

q

)i

·
(
1− 1

q

)n−i
]

to set the maximum number ρ of blocks in a position, such
that no position will contain more than ρ blocks except
with probability 2−λ, when the number of positions is q
and the number of total real blocks is n. Specifically, to
maintain 220 unretrieved messages and achieve at most 2−40

failure probability, we can set ρ = 20, which will lead to a
significant performance decline.

Appendix B.
Deferred Proofs about ORAM−

B.1. Security Proof for Obliviousness

Theorem. If the underlying tree-based ORAM is a secure
ORAM, then our construction shown in Algorithm 2 is a
secure ORAM−.

Proof. We have proved the correctness in Section 5.1, next
we prove obliviousness.
Obliviousness. If there is an adversary A that can distin-
guish two sequences of physical memory accesses generated
by two sequences of operations run by ORAM−. Then,
we can construct another adversary B that can distinguish
two sequences of physical memory accesses generated by
two sequences of operations run by ORAM. Next, we will
construct the adversary B.

The adversary B maintains two tables T (0) and T (1)

to store the linkability between an index for ORAM and
an index for ORAM−, and a bit indicating if an index for
ORAM corresponds to a valid message. Specifically, each
entry of the tables is a tuple (idORAM, idORAM− , b) where
b = 1 indicates that there is a message associated with
idORAM. The adversary B initializes the tables T (0) and T (1)

by storing (idORAM, 0, 0) for each index idORAM of ORAM.
Once receiving two operations (Op

(0)
k , i

(0)
k ,m

(0)
k )} and

(Op
(1)
k , i

(1)
k ,m

(1)
k )} from the adversary A, the adversary

B generates another two operations (Õp
(0)

k , ĩ
(0)
k , m̃

(0)
k ) and

(Õp
(1)

k , ĩ
(1)
k , m̃

(1)
k ), based on the following rule.

• If Op(0)k = Op
(1)
k = Write:

– The adversary B randomly chooses an index ĩ
(0)
k

(resp. an index ĩ
(1)
k ) whose tuple is (̃i

(0)
k , 0, 0)

(resp. (̃i
(1)
k , 0, 0)) in the table T (0) (resp. T (1)),

and changes the tuple to (̃i
(0)
k , i

(0)
k , 1) (resp.

(̃i
(1)
k , i

(1)
k , 1));

– The adversary B sets Õp
(0)

k = Õp
(1)

k = Write;
– The adversary B sets m̃(0)

k = m
(0)
k and m̃

(1)
k = m

(1)
k .

• If Op(0)k = Op
(1)
k = Read:

– If there is a tuple (id(j), i
(j)
k , 1) in T (j) :

∗ The adversary B sets ĩ
(j)
k = id(j), and changes

the tuple to (id(j), 0, 0);
∗ The adversary B sets Õp

(j)

k = Write;
∗ The adversary B sets m̃

(j)
k = 0.

– If there is not a tuple (id(j), i
(j)
k , 1) in T (j) :

∗ The adversary B randomly chooses ĩ
(j)
k that is

not in the index space of ORAM;
∗ The adversary B sets Õp

(j)

k = Write;
∗ The adversary B sets m̃

(j)
k = 0.

Then, the adversary B sends (Õp
(0)

k , ĩ
(0)
k , m̃

(0)
k ) and

(Õp
(1)

k , ĩ
(1)
k , m̃

(1)
k ) to the challenger of ORAM. The

challenger will randomly choose a bit c, and run
(Õp

(c)

k , ĩ
(c)
k , m̃

(c)
k ) on ORAM to generate the physical mem-

ory access sequence AccSeq and send back AccSeq to the
adversary B. Then, the adversary B can construct another
physical memory access sequence AccSeq′ according to
AccSeq, and sends AccSeq′ to the adversary A.

Next, we explain that how the adversary B can construct
AccSeq′ for ORAM− according to AccSeq.

For a Write operation on ORAM−, the physical memory
access includes: (1) read the stash and a path for eviction,
and (2) write blocks into the stash and the path after per-
forming writing and eviction. The physical memory access
for ORAM is exactly the same.

For a Read operation on ORAM−, the physical memory
access includes: (1) read the stash and a corresponding
path, and (2) write blocks into the stash and the path after
releasing the corresponding block. In ORAM, although there
is an eviction process, the physical memory access is exactly
the same. If there is no active block for the index, both
ORAM and ORAM− do not generate the physical memory
access.

Finally, the adversary A outputs a bit c′, and then the
adversary B forwards c′ to the challenger. Since AccSeq =
AccSeq′, if the adversary A can distinguish the sequences
for ORAM− with non-negligible probability, the adversary
B can distinguish the sequences for ORAM with the same
probability.

Appendix C.
Deferred Proofs about Protocols

C.1. Ideal Functionality

C.2. Security Proof for the Complete Protocol

Theorem. Assuming the hardness of Discrete-logarithm
problem, computational security and correctness
of ORAM−, and at least one of the servers is
honest, our protocol Π = (ΠInitialize,ΠSend,ΠRetrieve)
UC-realizes the ideal functionality Fanon in the
{FPET,FShuffle,FSC−ORAM−}-hybrid world.

Proof. To prove that our protocol UC-realizes the Fanon

functionality, we show that there exists a simulator Sfull
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1: Upon receiving (([bid]j , [lid]j)j∈1,2, READ) from the
servers:
(a) Run ORAM−.READ with inputs ([bid]1 + [bid]2,

[lid]1 + [lid]2 ) as the ORAM− server.
(b) Return the output and all the transcript generated

from step 1.(a) to the servers
2: Upon receiving (([bid]j , [lid]j)j∈1,2, WRITE,msg) from

the servers:
(a) Run ORAM−.WRITE with inputs ([bid]1 + [bid]2,

[lid]1 + [lid]2, msg ) as the ORAM− server.
(b) Return all the transcript generated from step 2.(a) to

the servers.

Functionality FSC−ORAM−

Figure 14: Ideal functionality realizing ORAM− in secure
computation setting.

interacting with Fanon functionality that generates a tran-
script that is indistinguishable from the transcript generated
by the real-world adversary A in the protocol Π. We present
the description of the simulator in Figs. 15 and 16.

We show that the transcript of the adversary in the real-
world and in the simulated world are indistinguishable by
presenting hybrids that are indistinguishable for the adver-
sary:

• Hybrid0: The real-world protocol.
• Hybrid1: This hybrid is same as the previous hybrid,

except that the random tapes of the corrupted server and
the corrupted clients are chosen by the simulator. Since, the
adversary is semi-honest, this is indistinguishable from the
previous hybrid.

• Hybrid2: This hybrid is identical to the previous
one, except that the keypairs for the honest server and the
AddrRcv values for the honest recipients are generated by
the simulator. Any communication from these parties will
be intercepted by the simulator, and simulator will generate
random communication to replace the original communica-
tions. These hybrids are indistinguishable since one of the
servers is honest, and based on the hardness of DL-problem.

• Hybrid3: This hybrid is identical to the previous
hybrid, except that the simulator invokes FSC−ORAM− to
execute ORAM−.WRITE and ORAM−.READ operations
using the manufactured inputs as in Figs. 15 and 16. Based
on the computational security of our ORAM− scheme (see
Theorem 2), the accesses with manufactured input are indis-
tinguishable from the access pattern of the original protocol;
moreover, FSC−ORAM− guarantees that the original input
is never revealed, and our simulator S ensures that the
volume information is preserved. Therefore, the hybrids are
indistinguishable.

Simulating ΠInitialize:
1) w.l.o.g. assuming Server2 is corrupted.
2) On behalf of honest Server1 generate (pk1, sk1), and

broadcast (PK, pk1). (Note that our simulator Ss knows
the key pairs of the honest server.)

3) The simulator also chooses the random tape for
Server2.

4) On behalf of each honest recipient Rcvi, sample
kRi ← Zp and compute AddrRi = gkRi and broadcast
(ADDR,AddrRi).

5) Wait for the adversary A to send (PK, pk2) on behalf
of Server2 and (ADDR,AddrRi) on behalf of each
corrupted recipient.

Simulating ΠSend:
1) Upon receiving (Send, ui, , ) from Fanon

functionality (for an honest sender ui): The simulator
generates the shares for the servers by running the
code of the client, however, without knowing the actual
message or the recipient. And that requires the
following modifications.
a) Generate [m]1 + [m]2 = 0, r $←− Zp, R = gr , and

A = (AddrRcv)
r , for a randomly chosen recipient

Rcv; further, randomly split A into A1 and A2 such
that A1 ·A2 = A.

b) Now run the remaining client code of ΠSend to send
the shares (([bid]j , [lid]j , [m]j), (Aj , R)) to the
respective servers. (Note that, the communications to
Server1 are only for the purpose of generating
transcript for the real-world adversary A, any output
generated by Server1 is ignored by S.)

c) Additionally, store the tuple
([m]1, [bid]1, [lid]1, A1, R, r, 0) in a local table T1,
and ([m]2, [bid]2, [lid]2, A2) in another local table
T2.

2) Upon receiving
((([bid]j , [lid]j , [m]j), (Aj , R))j∈1,2,msg,AddrRcv)
from A (for a corrupted sender ui):
a) Store the tuple ([m]1, [bid]1, [lid]1A1, R, r,msg) in

the local table T1, and ([m]2, [bid]2, [lid]2, A2) in
another local table T2.

b) Send (SEND, ui,AddrRcv,msg) to the ideal
functionality Fanon

3) Preparing for retrievals:
a) Run the server part of ΠSend protocol on behalf of

Server1 (see Fig. 10).
b) In the last step, invoke FSC−ORAM− to execute

ORAM−.WRITE with input ([bid]1, [lid]1, [m]1)
together with Server2.

Simulator Sfull

Figure 15: Simulating Send when the servers use ORAM−
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Simulating ΠRetrieve:
1) Upon receiving (Retrieve, kRcvj ,1, kRcvj ,2,Rcvj) from
A where Rcvj is corrupted:
a) Send (Retrieve,Rcvj) to Fanon. Let M be the

response from Fanon.
b) Run the code of the two servers locally using T1

and T2 to generate the output vectors B1 and B2

corresponding to the servers. Suppose, B1 and B2

collectively yields the set of messages M′ for
AddrRcvj .

c) For each element m in M\M′: find a tuple
T = ([m]1, [bid]1, [lid]1, A1, R, r,msg) in T1 such
that msg = 0 and A1 ·A2 ̸= (AddrRcvj )

r . Update
A1 = (AddrRcvj )

r/A2, update [m]1 = msg − [m]2,
and set msg = m.

d) For each element m in M′ \M: find the tuple
T = ([m]1, [bid]1, [lid]1, A1, R, r,msg) in T1 such
that msg = 0 and A1 ·A2 = (AddrRcvj )

r . Update
A1 = (AddrRcvw )

r/A2, for a randomly chosen
recipient Rcvw ̸= Rcvj .

e) Run the code for Server1 (see Fig. 11) again with
updated T1 as part of the protocol with Server2, in
order to generate new output vector g⃗′1, and wait for
A to generate g⃗′2 on behalf of Server2.

f) For each g = b′k,2||[bid]′k,2||[lid]′k,2 ∈ g⃗′1: if
(b′k,2 ⊕ b′k,1) = 1, invoke FSC−ORAM− to execute
ORAM−.READ with input
([bid]′k,1||[lid]′k,1, [bid]′k,2||[lid]′k,2) acting as Server1.

2) Upon receiving (Retrieve,Rcvj , k) from Fanon:
a) Generate A1 and A2 such that

A1 ·A2 = (AddrRcvj )
r for r

$←− Zp.
b) Run the code of the two servers locally using T1

and T2 to generate the output vectors B1 and B2

corresponding to the servers. Suppose, B1 and B2

collectively yields k′ messages AddrRcvj .
c) If k′ > k, find k′ − k tuples in T1 such that, for

each of them, msg = 0 and A1 ·A2 = (AddrRcvj )
r .

Update A1 = (AddrRcvw )
r/A2, for a randomly

chosen recipient Rcvw ̸= Rcvj .
d) If k′ < k, find k′ − k tuples in T1 such that, for

each of them, msg = 0 and A1 ·A2 ̸= (AddrRcvj )
r .

Update A1 = (AddrRcvj )
r/A2, and set msg = 1.

e) Run the code for Server1 (see Fig. 11) again with
updated T1 as part of the protocol with Server2, in
order to generate transcript for the adversary. (Note
that the honest recipient has already received the
actual output from Fanon and can ignore any output
produced by the simulator.)

Simulator Sfull

Figure 16: Simulating Retrieve when the servers use
ORAM− for performance improvement

18


	Introduction
	Our Contribution
	Related Work

	Technical Overview
	System Setting
	Key Idea
	Basic Construction
	Scaling via a New Variant of ORAM

	Preliminary
	Oblivious RAM
	Oblivious Shuffling
	Private Equality Test

	Protocol Design
	Basic Protocol
	Scaling With ORAM
	Protecting Volume Information by Adding Dummy Messages

	Security Analysis
	Security of ORAM-
	Security Against Passive Adversaries
	Anonymity Definition

	Defending Against Malicious Behaviors
	Malicious Senders
	Malicious Server Colluding With Receivers
	Tampering with the stored data


	Performance Evaluation
	Experimental Evaluation
	Benchmarks
	End-to-end Performance


	Conclusion
	References
	Appendix A: Why Not Choose List-based ORAM
	Appendix B: Deferred Proofs about ORAM-
	Security Proof for Obliviousness

	Appendix C: Deferred Proofs about Protocols
	Ideal Functionality 
	Security Proof for the Complete Protocol


